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We propose a method for conducting algebraic program analysis (APA) incrementally in response to changes of
the program under analysis. APA is a program analysis paradigm that consists of two distinct steps: computing
a path expression that succinctly summarizes the set of program paths of interest, and interpreting the path
expression using a properly-defined semantic algebra to obtain program properties of interest. In this context,
the goal of an incremental algorithm is to reduce the analysis time by leveraging the intermediate results
computed before the program changes. We have made two main contributions. First, we propose a data
structure for efficiently representing path expression as a tree together with a tree-based interpreting method.
Second, we propose techniques for efficiently updating the program properties in response to changes of the
path expression. We have implemented our method and evaluated it on thirteen Java applications from the
DaCapo benchmark suite. The experimental results show that both our method for incrementally computing
path expression and our method for incrementally interpreting path expression are effective in speeding up
the analysis. Compared to the baseline APA and two state-of-the-art APA methods, the speedup of our method
ranges from 160× to 4761× depending on the types of program analyses performed.
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1 Introduction
Algebraic program analysis (APA) is a general framework for analyzing the properties of a computer
program at various levels of abstraction. At a high level, it can be viewed as an alternative to the
classic, chaotic-iteration based program analysis. While both iterative program analysis and APA
view the space of program properties (or facts) of interest as an abstract structure, i.e., a lattice
or a semi-lattice, the way they compute these properties are different. Iterative program analysis
follows an interpret-and-then-compute approach, meaning that it first interprets the semantics of a
program using a properly-defined abstract domain and an abstract transformer, and then computes
the properties by propagating them through the control flow graph iteratively, until a fixed point is
reached. Examples include the unified data-flow analysis framework of Kildall [11] and abstract
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interpretation of Cousot and Cousot [7]. In contrast, APA follows a compute-and-then-interpret
approach, meaning that it first computes a so-called path expression, which is a type of regular
expression for summarizing all program paths of interest, and then interprets the path expression
using a properly-defined semantic algebra and a semantic function to compute program properties
of interest.

The compute-and-then-interpret approach of APA exploits the fact that the semantics of a program
is determined by its structure and the semantics of its components. In other words, the approach is
inherently compositional. While perhaps not being as widely-used as iterative program analysis,
APA has a long history that can be traced back to an algebraic approach for solving path problems
in directed graphs, for which Tarjan [28] proposed a fast algorithm and a unified framework [29];
in addition to solving graph-theoretic problems such as computing single-source shortest paths, the
framework is able to solve many program analysis problems. Being compositional allows APA to
scale to large programs, to be applied to incomplete programs, and to be parallelized easily [14]. Due
to these reasons, APA has been employed in many settings. For example, beyond classic data-flow
analyses, APA has been used for invariant generation [13], termination analysis [37], predicate
abstraction [22], and more recently, for analyzing probabilistic programs [30].
However, we are not aware of any existing algorithm for conducting APA incrementally in

response to small and frequent changes of the program. Being able to quickly update the result
of a program analysis for a frequently-changed program is important for many software engi-
neering tasks, i.e., inside an intelligent IDE or during the continuous integration (CI) / continuous
development (CD) process. Computing the analysis result for the changed program from scratch is
not only time-consuming but also wasteful when the change is small. In contrast, incrementally
updating the analysis result by leveraging the intermediate results computed for a previous version
of the program can be significantly faster. While the potential for APA to support incremental
computation has been mentioned before, e.g., by Kincaid et al. [14], exactly how to accomplish it
remains unknown.
At the most fundamental level, there are two technical hurdles associated with incrementally

conducting APA. The first one is designing data structures and algorithms that can efficiently update
the path expression. The second one is designing data structures and algorithms that can efficiently
updates the program properties (facts) by interpreting the changed path expression incrementally.
Recall that in the context of APA, the path expression is a special type of regular expression
for capturing the set of all program paths of interest. Classic APA methods focus primarily on
optimizing the data structures and algorithms to compute the path expression quickly, e.g., using
graph-theoretic techniques that combine tree decompositions and centroid decompositions [6, 28].
There are also methods for improving the quality of path expression [8]. While all path expressions
are guaranteed to capture the feasible program paths of interest, thus guaranteeing soundness, a path
expression is considered better than another if it captures fewer infeasible program paths. However,
all the existing APA algorithms are optimized for non-incremental applications. Unfortunately,
for incremental APA, these otherwise-elegant optimization techniques may become a hurdle for
supporting efficient updates in response to frequent program changes. Existing APA algorithms
do not guarantee that small code changes lead to small incremental updates. For example, even if
a program slightly changes, classic data structures for representing path expression may change
drastically. Similarly, classic algorithms for interpreting the path expression are not optimized to
support efficient updates in response to frequent program changes.

To overcome the aforementioned limitations, we propose a new method specifically designed for
incremental APA. The goal is to drastically reduce the analysis time by leveraging intermediate
results that have already been computed for a previous version of the program. At a high level, these
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Fig. 1. The difference between the baseline APA (on the left) and our new incremental APA (on the right).

intermediate results include both data structures and algorithms for representing and updating
path expression and program facts computed using the path expression.
Following classic results [20] on the computational complexity of dynamic graph problems,

efficiently maintaining a dynamic graph’s structure and node/edge information for incremental
queries is a theoretically challenging problem in general. For APA, coming up with a desirable data
structure is a non-trivial task. We accomplish this by starting from a directed acyclic graph, then
adding backward edges to form the basic structures, and finally designing algorithms to keep the
tree balanced to efficiently handle queries. Specifically, we have chosen a “weight balanced tree”
where structural limitations imposed by the “choice” and “Kleene star” operators of APA do not
allow arbitrarily rotating the tree (an operation allowed by other balanced trees such as Splay Tree
or Red-Black Tree). In addition to avoiding the rotation of the tree, we also support persistent and
revocable operations.

As shown in Fig. 1, assuming that APA has been conducted for a previous version of the program
𝑃 ′ to obtain the path expression 𝜌 ′ and the set 𝐹 ′ of program facts, our goal is to efficiently compute,
for the new program 𝑃 , the path expression 𝜌 and the set 𝐹 of program facts. Instead of computing 𝜌
and 𝐹 for program 𝑃 from scratch, as shown by the baseline APA on the left-hand side, we propose
to do so incrementally as shown by the new method on the right-hand side. Our key observation is
that, given a semantic algebra, the denotational semantics of the program also satisfies the algebraic
rules, which inspired us to find an efficient way to reuse the interpretation result of the prior path
expression to speed up the interpretation of the new path expression. Specifically, we compute the
new path expression 𝜌 by incrementally updating the existing path expression 𝜌 ′ based on the
difference between programs 𝑃 ′ and 𝑃 , denoted Δ𝑃 = Diff(𝑃, 𝑃 ′). Then, we compute the new set 𝐹
of program facts by incrementally updating the existing set 𝐹 ′ based on Δ𝜌 = Diff(𝜌 ′, 𝜌), which is
the difference between path expressions 𝜌 ′ and 𝜌 .
In practice, incrementally computing path expression 𝜌 and the program facts in 𝐹 based on

the existing 𝜌 ′ and 𝐹 ′ has the potential to achieve orders-of-magnitude speedup compared to
computing 𝜌 and 𝐹 from scratch, especially for small program changes. For example, with 4% of
program change, we have observed a speed up of more than 160× to 4761× during our experimental
evaluation (Section 7), depending on the types of analysis performed by APA1. Theoretically,
incrementally computing path expression 𝜌 and program facts in 𝐹 using APA can also lead to some
nice properties; for example, when the semantic algebra satisfies certain conditions, our method
guarantees to return unique analysis result efficiently. Details can be found in Section 6.
While there is a large body of existing work on APA, our method differs in that it solves a

significantly different problem. For example, the most recent work of Conrado et al. [6] focuses

1In our experiments, we have implemented three types of analyses: computing reaching definitions, the use of possibily-
unitialized variables, and a simple constant-time analysis for proving the absence of timing side-channel.
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on amortizing the cost of answering a large number of APA queries for a fixed program (without
any program change) by precomputing intermediate results while building the path expression, to
achieve the goal of answering each APA query in𝑂 (𝑘) time, where 𝑘 is the time needed to evaluate
an atomic operation in the semantic algebra. Their method exploits sparseness of the control flow
graph in a centroid-based divide-and-conquer algorithm for computing path expression. Another
recent work of Cyphert et al. [8] focuses on computing a path expression that is of a higher quality
than a given path expression, assuming that both capture all feasible program paths but one is
more accurate in that it captures fewer infeasible program paths. The classic APA methods of
Tarjan, which focus on quickly computing path expression [28] and a unified framework for solving
path problems [29], remain competitive in terms of speed; Reps et al. [21] are the first to leverage
Tarjan’s algorithm to compute path expression in polynomial time. While all of these existing
methods are closely related, they do not solve the same problem as ours. Thus, we consider them
to be orthogonal and complementary to our method.
To evaluate the performance of our method in practice, we have implemented our method in a

tool for analyzing Java bytecode programs, and evaluated it on 13 real-world applications from
the DaCapo benchmark suite [5]. They are open-source applications implementing a diverse set of
functionalities, with code size ranging from 23k LoC (antlr) to 220k LoC (fop). We experimentally
compared our incremental APA method with three other methods: the baseline APA, the most
recent method of Conrado et al. [6], and the fast algorithm of Tarjan [28]. Our experiments were
conducted using semantic algebras and semantic functions designed for three types of program
analyses: computing reaching definitions, computing the use of possibly-uninitialized variables,
and constant-time analysis. Our ablation studies show that both our technique for incrementally
computing path expression and our technique for incrementally interpreting path expression are
effective in speeding up the analysis. Overall, the speedup of our method is more than 160X to
4761X compared to the baseline APA and the other two existing methods.

To summarize, this paper makes the following contributions:
• We propose a method for conducting APA incrementally in response to program changes,
with the goal of leveraging intermediate computation results to speed up the analysis.
• We propose new data structures and algorithms for efficiently updating the path expression,
and interpreting the path expression to compute the program facts.
• We implement the proposed method in a software tool and demonstrate its advantage over
competing methods on Java applications from a well-known benchmark suite.

The remainder of this paper is organized as follows. First, we provide the technical background
in Section 2. Then, we define the incremental APA problem and present our top-level procedure
in Section 3. Next, we present our techniques for incrementally computing the path expression
in Section 4, and for incrementally interpreting the path expression in Section 5. We analyze the
mathematical properties of our proposed method in Section 6, and present the experimental results
in Section 7. We review the related work in Section 8, and finally, give our conclusion in Section 9.

2 Background
In this section, we review the basics of algebraic program analysis (APA) and present the technical
details of the two distinct steps of APA: computing the path expression and interpreting the path
expression to compute the program facts of interest.

2.1 The Program
Given a program 𝑃 , algebraic program analysis is concerned with computing facts that must be true
at each program location, regardless of the actual path of program execution taken to reach the
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1 int a, b, c, d, e;
2 a = 5;
3 b = a + 5;
4 while (a < 20){
5
6 if (a > 0)
7 d = b;
8 else a = a + 10;
9 printf(''\%d'', d);
10 }
11 c = a + 1;
12 printf(''\%d'', b+c+e);
13 return;
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Fig. 2. An example program for the problem of detecting uses of possibly-uninitialized variables.

location. To solve the problem, a preliminary step is constructing the control flow graph, denoted
𝐺 = (𝑁, 𝐸, 𝑠) where 𝑁 is a set of nodes, 𝐸 is a set of directed edges between the nodes, and 𝑠 ∈ 𝑁 is
the entry node. Each node 𝑛 ∈ 𝑁 represents a basic block of the program, where a basic block is
a block of contiguous program statements with a single entry and a single exit. Each edge 𝑒 ∈ 𝐸
represents a possible transfer of control between the nodes (basic blocks) in 𝑁 . The entry node
𝑠 ∈ 𝑁 represents the start of program execution.

Consider the example program shown on the left-hand side of Fig. 2, for which the control flow
graph is shown on the right-hand side. Assuming that each line in the program corresponds to
a node in the graph, we have the set of nodes 𝑁 = {𝑛1 − 𝑛4, 𝑛6 − 𝑛9, 𝑛11 − 𝑛13}, the set of edges
𝐸 = {𝑒1 − 𝑒3, 𝑒4, 𝑒′4, 𝑒6, 𝑒′6, 𝑒7 − 𝑒9, 𝑒11, 𝑒12} and the entry node 𝑠 = 𝑛1. Specifically, the two edges
coming out of node 𝑛4 are labeled 𝑒4 and 𝑒′4, respectively, and the two edges coming out of node 𝑛6
are labeled 𝑒6 and 𝑒′6, respectively.

2.2 Two Approaches to Program Analysis
As mentioned earlier, there are two approaches to program analysis: iterative program analysis
and algebraic program analysis. Iterative program analysis starts with a system of (recursive)
equations for defining the semantics of the program in an abstract domain, followed by solving
these equations through successive approximation. In the literature, the first step is referred to
as interpret and the second step is referred to as compute. Thus, iterative program analysis is also
called the interpret-and-then-compute approach. Examples of iterative program analysis include
Kildall’s gen/kill analysis [11], the abstract interpretation framework [7], and model checking of
Boolean programs using predicate abstraction [4].

Algebraic program analysis, in contrast, adopts the compute-and-then-interpret approach. It starts
with computing the path expression, which is a type of regular expression for summarizing the
program paths of interest, followed by interpreting the path expression using a properly-defined
semantic algebra and a semantic function, to obtain the program facts of interest. Regardless of
which type of analysis is performed by APA, the path expression remains the same for a given
program. However, the definitions of semantic algebra and semantic function will have to depend on
the nature of the analysis itself. Depending on the task, the semantic algebra and semantic function
must be defined accordingly. Nevertheless, at a high level, all types of analyses performed by APA
have the same two steps: computing the path expression and interpreting the path expression.
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2.3 The Path Expression
Given a control flow graph 𝐺 = (𝑁, 𝐸, 𝑠), the set of all program paths that start from 𝑠 and end
at 𝑡 may be captured by a special type of regular expression over 𝐸, denoted 𝜌 (𝑠, 𝑡), where 𝑠 is
the start point of a path, and 𝑡 is the end point. This regular expression is referred to as the path
expression [28, 29]. We say that the regular expression is special because the finite alphabet used
to define the regular expression is 𝐸, the set of edges in the control flow graph. Thus, a string
corresponds to a sequence of edges in the control flow graph. While not every string corresponds
to a program path, e.g., it may have edges randomly scattered in the graph, not forming a path at
all, we require that all strings in the path expression to correspond to program paths.

The path expression 𝜌 is defined recursively as follows:

• 𝜖 (the empty string) is an atomic regular expression.
• ∅ (the empty set) is an atomic regular expressions.
• Any edge 𝑒 ∈ 𝐸 is an atomic regular expression.
• Given two regular expressions 𝜌1 and 𝜌2, the union (𝜌1 + 𝜌2), concatenation (𝜌1 · 𝜌2) and
Kleene star (𝜌1)∗ are regular expressions.

In addition, if a regular expression 𝜌1 is repeated 𝑘 times, we represent it using 𝜌𝑘1 . That is, 𝜌
𝑘
1 =

𝜌𝑘−11 · 𝜌1, where 𝑘 ≥ 1 and 𝜌01 = 𝜖 (the empty string).
Consider the program shown in Fig. 2 as an example. The path expression that captures the

first three lines of code is 𝜌1 = 𝑒1𝑒2𝑒3, which is the concatenation of the three edges. The path
expression that captures Lines 6-8 is 𝜌2 = (𝑒6𝑒7 + 𝑒′6𝑒8), which is the union of the two branches.
The path expression that captures the while-loop is 𝜌3 = (𝑒4 (𝑒6𝑒7 + 𝑒′6𝑒8)𝑒9)∗. Finally, the path
expression that captures all paths from 𝑛1 to 𝑛13 is 𝜌 = 𝑒1𝑒2𝑒3 (𝑒4 (𝑒6𝑒7 + 𝑒′6𝑒8)𝑒9)∗𝑒′4𝑒11𝑒12, where
𝑒1𝑒2𝑒3 represents the prefix leading to the while-loop, (𝑒4 (𝑒6𝑒7 +𝑒′6𝑒8)𝑒9)∗ represents the while-loop,
and 𝑒′4𝑒11𝑒12 represents the suffix after the while-loop.

At this moment, it is worth noting that the path expression guarantees to capture all the feasible
program paths, thus leading to guaranteed soundness of APA. At the same time, not all program
paths captured by the path expression may be feasible, meaning that APA (same as iterative program
analysis) in general is a type of possibly conservative (over-approximate) analysis. In other words,
APA is a sound, but not-necessarily-complete analysis.

2.4 The Semantic Algebra
Given a path expression 𝜌 , which summarizes the program paths of interest, we can compute the
program facts over these program paths, by interpreting the path expression using a properly
defined semantic algebra, denoted D = ⟨𝐷, ⊗, ⊕,⊛, 0, 1⟩. Here, 𝐷 is the universe of program
facts, ⊗ : 𝐷 × 𝐷 → 𝐷 is the sequencing operator, ⊕ : 𝐷 × 𝐷 → 𝐷 is the choice operator, and
⊛ : 𝐷 → 𝐷 is the iteration operator. Furthermore, 0 and 1 are the minimal and maximal elements
in 𝐷 , respectively.

Intuitively, the ⊗, ⊕ and ⊛ operators in the semantic algebra D correspond to the concatenation
(×), union (+) and Kleene star (∗) operators in regular expression, respectively. Thus, we have

• D⟦𝜌1𝜌2⟧ =D⟦𝜌1⟧ ⊗ D⟦𝜌2⟧;
• D⟦𝜌1 + 𝜌2⟧ =D⟦𝜌1⟧ ⊕ D⟦𝜌2⟧; and
• D⟦(𝜌1)∗⟧ = (D⟦𝜌1⟧)⊛ .

What it means is that program facts can be computed in a bottom-up fashion, first for small
components, 𝜌1 and 𝜌2, and then for the large component 𝜌 = 𝜌1𝜌2, 𝜌 = 𝜌1 + 𝜌2, or 𝜌 = (𝜌1)∗.
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2.5 The Semantic Function
At this moment, we have not yet defined 𝐷 , the universe of program facts, or the actual functions
for ⊗, ⊕ and ⊛. The reason is because they must be defined for each type of analysis, whether it is
for computing reaching definitions or for computing the use of possibly-uninitialized variables. For
ease of understanding, in the remainder of this section, we treat the use of possibly-uninitialized
variables as a running example.
Running Example: Use of Possibly-uninitialized Variables. Let 𝑉𝑎𝑟 be the set of variables in
a program 𝑃 . Given a subset of 𝑉𝑎𝑟 , each variable 𝑣 ∈ 𝑉𝑎𝑟 is either in that subset, or outside of
that subset; in other words, there are only 2 possible cases. Thus, the power-set 2𝑉𝑎𝑟 consists of all
possible subsets of 𝑉𝑎𝑟 . To capture the space of program facts, we define 𝐷 = (𝐷𝐼, 𝑃𝑈 ) where
• 𝐷𝐼 = 2𝑉𝑎𝑟 stands for the definitely-initialized set, consisting of all possible subsets of variables
that are definitely-initialized, and
• 𝑃𝑈 = 2𝑉𝑎𝑟 stands for the possibly-uninitialized set, consisting of all possible subsets of
variables that are used while being possibly-uninitialized.

After defining the space of program fact 𝐷 = (𝐷𝐼, 𝑃𝑈 ), for each edge 𝑒 ∈ 𝐸, we define a semantic
function D⟦⟧ : 𝐸 → 𝐷 . For brevity, we only show what it looks like using two assignment
statements from Fig. 2:
• for the edge 𝑒2 coming out of node 𝑛2: a=5, we define 𝐷𝐼𝑒2 = {𝑎} and 𝑃𝑈𝑒2 = {};
• for the edge 𝑒3 coming out of node 𝑛3 : b=a+5, we define 𝐷𝐼𝑒3 = {𝑏} and 𝑃𝑈𝑒3 = {𝑎}.

The reason why 𝐷𝐼𝑒3 = {𝑏}, meaning 𝑏 is definitely-initialized, is because the statement in 𝑛3 writes
to 𝑏. The reason why 𝑃𝑈𝑒3 = {𝑎} is because the statement in 𝑛3 reads from 𝑎, but 𝑎 is not yet defined
in 𝑛3 alone; thus, we assume it is a use of possibly-uninitialized variable for now.
For the ⊗ operator, e.g., 𝐿 ⊗ 𝑅, we define a semantic function. Assuming that 𝐷𝐿 = (𝐷𝐼𝐿, 𝑃𝑈𝐿)

and 𝐷𝑅 = (𝐷𝐼𝑅, 𝑃𝑈𝑅) are already computed, we define 𝐷𝐿⊗𝑅 = (𝐷𝐼, 𝑃𝑈 ) as follows:
• 𝐷𝐼 = 𝐷𝐼𝐿 ∪ 𝐷𝐼𝑅 ; and
• 𝑃𝑈 = 𝑃𝑈𝐿 ∪ (𝑃𝑈𝑅 \ 𝐷𝐼𝐿).

Consider 𝑒2⊗𝑒3 from the program in Fig. 2 as an example. The reason why𝐷𝐼 = 𝐷𝐼𝑒2 ∪𝐷𝐼𝑒3 = {𝑎, 𝑏}
is because, as long as a variable is definitely-initialized in either 𝑒2 or 𝑒3, it is definitely-initialized
in 𝑒2 ⊗ 𝑒3. The reason why 𝑃𝑈 = 𝑃𝑈𝑒2 ∪ (𝑃𝑈𝑒3 \ 𝐷𝐼𝑒2 ) = {} is because, although 𝑎 is used while
being not-yet-initialized in 𝑒3, it is initialized in 𝑒2; therefore, 𝑎 is removed from the set 𝑃𝑈 .

For the ⊕ operator, e.g., 𝐿 ⊕ 𝑅, we define 𝐷𝐿⊕𝑅 = (𝐷𝐼, 𝑃𝑈 ) as follows:
• 𝐷𝐼 = 𝐷𝐼𝐿 ∩ 𝐷𝐼𝑅 ; and
• 𝑃𝑈 = 𝑃𝑈𝐿 ∪ 𝑃𝑈𝑅 .

Consider (𝑒6 ⊗ 𝑒7 ⊕ 𝑒′6 ⊗ 𝑒8) from the program in Fig. 2 as an example. The reason why 𝐷𝐼 =

𝐷𝐼𝑒6⊗𝑒7 ∩ 𝐷𝐼𝑒′6⊗𝑒8 = {𝑑} ∩ {𝑎} = {} is because a variable is definitely-initialized if it is definitely-
initialized in both branches. The reason why 𝑃𝑈 = 𝑃𝑈𝑒6⊗𝑒7 ∪ 𝑃𝑈𝑒′6⊗𝑒8 = {𝑎, 𝑏} ∪ {𝑎} = {𝑎, 𝑏} is
because a variable is possibly-uninitialized if it is possibly-uninitialized in either of the branches.

For the ⊛ operator, e.g., (𝐿)⊛ , we define 𝐷 = (𝐷𝐼, 𝑃𝑈 ) as follows:
• 𝐷𝐼 = ∅; and
• 𝑃𝑈 = 𝑃𝑈𝐿 .

The reason why 𝐷𝐼 = ∅ is because (𝐿)⊛ includes (𝐿)0 = 𝜖 , which is an empty string representing
the skip of the loop body; in this case, no variable is defined at all. The reason why 𝑃𝑈 = 𝑃𝑈𝐿 is
because, if a variable is used while being possibly-uninitialized during one loop iteration, it remains
a use of possibly-uninitialized variable for an arbitrary number of loop iterations.
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Fig. 3. Computing the program properties by interpreting the path expressions.

2.6 The Baseline APA
In the remainder of this section, we explain how the baseline (non-incremental) APA works using
the program in Fig. 2 as the running example. Our goal is to compute the use of possibly-uninitialized
variables. In this program, there are two such uses. The first one is the use of variable d at Line 9,
where d may be uninitialized if the else-branch at Line 8 is executed. The second one is the use
of variable e at Line 12, which is not initialized in this program. In both cases, the variables are
possibly-uninitialized when they are used.2
As mentioned earlier, APA consists of two distinct steps: computing the path expression and

interpreting the path expression. In the baseline (non-incremental) APA, both steps are performed
in a bottom-up fashion, first for individual edges in 𝐸, then for small code fragments, and finally
for the entire program.
Computing the Path Expression. The first step of APA is to compute the path expression, which
summarizes the program paths of interest. While there can be many data structures for representing
a regular expression and all of them have the same semantics (meaning they capture the same set
of strings), for the purpose of representing the path expression in APA, they may behave differently.
The reason is because the chosen data structure may significantly affect both the speed and the
result of the analysis. Depending on the order in which subexpressions are evaluated, for example,
the running time of APA may be different. Furthermore, the analysis result (the set of program
facts computed by APA at the end) may also be different.
For the analysis result to be unique, the semantic algebra must be associative. In Section 6, we

will discuss the impact of various algebraic properties in detail. For now, it suffices to assume that
the path expression will be represented using a tree, as shown in Fig. 3.
In this figure, the terminal nodes correspond to edges in the control flow graph. The internal

nodes correspond to the sequencing (⊗), choice (⊕), and iteration (⊛) operators. For example, the ⊗
node that combines 𝑒1 and 𝑒2 represents the subexpression 𝑒1𝑒2, meant to be interpreted as 𝑒1 ⊗ 𝑒2.
The ⊕ node that combines the nodes 𝑒6𝑒7 and 𝑒′6𝑒8 represents the subexpression (𝑒6𝑒7 +𝑒′6𝑒8), meant
to be interpreted as (𝑒6 ⊗ 𝑒7 ⊕ 𝑒′6 ⊗ 𝑒8). The while-loop is represented by (𝑒4 (𝑒6𝑒7 + 𝑒′6𝑒8)𝑒9)∗, meant
to be interpreted as (𝑒4 ⊗ (𝑒6 ⊗ 𝑒7 ⊕ 𝑒′6 ⊗ 𝑒8) ⊗ 𝑒9)⊛ . Finally, the entire program is represented by

2If a more accurate analysis is preferred, these two uses may be separated further: while d at Line 9 may be uninitialized, e
at Line 12 must be uninitialized.
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𝑒1𝑒2𝑒3 (𝑒4 (𝑒6𝑒7 + 𝑒′6𝑒8)𝑒9)∗𝑒′4𝑒11𝑒12, meant to be interpreted as 𝑒1 ⊗ 𝑒2 ⊗ 𝑒3 ⊗ (𝑒4 ⊗ (𝑒6 ⊗ 𝑒7 ⊕ 𝑒′6 ⊗
𝑒8) ⊗ 𝑒9)⊛ ⊗ 𝑒′4 ⊗ 𝑒11 ⊗ 𝑒12.
Interpreting the Path Expression. The second step of APA is to interpret the path expression
according to the semantic algebra and semantic function. For computing the use of possibly-
uninitialized variables, we shall use the semantic algebra and semantic function defined in the
previous subsection for illustration purposes. For the path expression tree shown in Fig. 3, in-
terpretation is performed in a bottom-up fashion. That is, we first compute 𝐷𝐿 = (𝐷𝐼𝐿, 𝑃𝑈𝐿) for
subexpression 𝐿 and 𝐷𝑅 = (𝐷𝐼𝑅, 𝑃𝑈𝑅) for subexpression 𝑅, and then compute 𝐷𝐿⊗𝑅 , 𝐷𝐿⊕𝑅 and 𝐷𝐿⊛

for the compound expressions.
The table below shows the detailed process of interpreting the path expression, to obtain the

program facts in 𝐷 = (𝐷𝐼, 𝑃𝑈 ) for the entire program:
Path expression Definitely-initialized variables Use of possibly-uninitialized variables

𝑒1 𝐷𝐼𝑒1 = {} 𝑃𝑈𝑒1 = {}
𝑒2 𝐷𝐼𝑒2 = {𝑎} 𝑃𝑈𝑒2 = {}
𝑒1𝑒2 𝐷𝐼𝑒1𝑒2 = 𝐷𝐼𝑒1 ∪𝐷𝐼𝑒2 = {𝑎} 𝑃𝑈𝑒1𝑒2 = 𝑃𝑈𝑒1 ∪ (𝑃𝑈𝑒2 \𝐷𝐼𝑒1 ) = {}
𝑒3 𝐷𝐼𝑒3 = {𝑏} 𝑃𝑈𝑒3 = {𝑎}
𝑒1𝑒2𝑒3 𝐷𝐼𝑒1𝑒2𝑒3 = 𝐷𝐼𝑒1𝑒2 ∪𝐷𝐼𝑒3 = {𝑎,𝑏} 𝑃𝑈𝑒1𝑒2𝑒3 = 𝑃𝑈𝑒1𝑒2 ∪ (𝑃𝑈𝑒3 \𝐷𝐼𝑒1𝑒2 ) = {}
𝑒4 𝐷𝐼𝑒4 = {} 𝑃𝑈𝑒4 = {𝑎}
𝑒6 𝐷𝐼𝑒6 = {} 𝑃𝑈𝑒6 = {𝑎}
𝑒7 𝐷𝐼𝑒7 = {𝑑 } 𝑃𝑈𝑒7 = {𝑏}
𝑒6𝑒7 𝐷𝐼𝑒6𝑒7 = {𝑑 } 𝑃𝑈𝑒7 = {𝑎,𝑏}
𝑒8 𝐷𝐼𝑒8 = {𝑎} 𝑃𝑈𝑒8 = {𝑎}
𝑒′6𝑒8 𝐷𝐼𝑒′6𝑒8

= {𝑎} 𝑃𝑈𝑒′6𝑒8
= {𝑎}

(𝑒6𝑒7 + 𝑒′6𝑒8 ) 𝐷𝐼 (𝑒6𝑒7+𝑒′6𝑒8 )
= {} 𝑃𝑈 (𝑒6𝑒7+𝑒′6𝑒8 )

= {𝑎,𝑏}
𝑒9 𝐷𝐼𝑒9 = {} 𝑃𝑈𝑒9 = {𝑑 }
(𝑒6𝑒7 + 𝑒′6𝑒8 )𝑒9 𝐷𝐼 (𝑒6𝑒7+𝑒′6𝑒8 )𝑒9

= {} 𝑃𝑈 (𝑒6𝑒7+𝑒′6𝑒8 )𝑒9
= {𝑎,𝑏,𝑑 }

𝑒4 (𝑒6𝑒7 + 𝑒′6𝑒8 )𝑒9 𝐷𝐼𝑒4 (𝑒6𝑒7+𝑒′6𝑒8 )𝑒9
= {} 𝑃𝑈𝑒4 (𝑒6𝑒7+𝑒′6𝑒8 )𝑒9

= {𝑎,𝑏,𝑑 }
(𝑒4 (𝑒6𝑒7 + 𝑒′6𝑒8 )𝑒9 )∗ 𝐷𝐼 (𝑒4 (𝑒6𝑒7+𝑒′6𝑒8 )𝑒9 )∗

= {} 𝑃𝑈 (𝑒4 (𝑒6𝑒7+𝑒′6𝑒8 )𝑒9 )∗
= {𝑎,𝑏,𝑑 }

𝑒11 𝐷𝐼𝑒11 = {𝑐 } 𝑃𝑈𝑒11 = {𝑎}
𝑒12 𝐷𝐼𝑒12 = {} 𝑃𝑈𝑒12 = {𝑏, 𝑐, 𝑒 }
𝑒11𝑒12 𝐷𝐼𝑒11𝑒12 = {𝑐 } 𝑃𝑈𝑒11𝑒12 = {𝑎,𝑏, 𝑒 }
(𝑒4 (𝑒6𝑒7 + 𝑒′6𝑒8 )𝑒9 )∗𝑒′4𝑒11𝑒12 𝐷𝐼 (𝑒4 (𝑒6𝑒7+𝑒′6𝑒8 )𝑒9 )

∗𝑒11𝑒12 = {𝑐 } 𝑃𝑈 (𝑒4 (𝑒6𝑒7+𝑒′6𝑒8 )𝑒9 )
∗𝑒′4𝑒11𝑒12

= {𝑎,𝑏,𝑑, 𝑒 }

𝑒1𝑒2𝑒3 (𝑒4 (𝑒6𝑒7 + 𝑒′6𝑒8 )𝑒9 )∗𝑒′4𝑒11𝑒12 𝐷𝐼𝑒1𝑒2𝑒3 (𝑒4 (𝑒6𝑒7+𝑒′6𝑒8 )𝑒9 )
∗𝑒′4𝑒11𝑒12

= {𝑎,𝑏, 𝑐 } 𝑃𝑈𝑒1𝑒2𝑒3 (𝑒4 (𝑒6𝑒7+𝑒′6𝑒8 )𝑒9 )
∗𝑒′4𝑒11𝑒12

= {𝑑, 𝑒 }

For example, consider the last row of the above table, which takes the program facts computed
for 𝜌1 = 𝑒1𝑒2𝑒3 and 𝜌2 = (𝑒4 (𝑒6𝑒7 + 𝑒′6𝑒8)𝑒9)∗𝑒′4𝑒11𝑒12 as input, and returns the program facts for the
entire program (𝜌) as output. At the start of the computation, we have 𝐷𝐼𝜌1 = {𝑎, 𝑏} and 𝑃𝑈𝜌1 = {},
meaning 𝑎 and 𝑏 are definitely-initialized in 𝜌1. We also have 𝐷𝐼𝜌2 = {𝑐} and 𝑃𝑈𝜌2 = {𝑎, 𝑏, 𝑑, 𝑒},
meaning that 𝑐 is definitely-initialized in 𝜌2 and 𝑎, 𝑏, 𝑐, 𝑒 are the uses of possibly-uninitialized
variables in 𝜌2 alone.

Since 𝜌 = 𝜌1 ⊗ 𝜌2, we have 𝐷𝐼𝜌 = 𝐷𝐼𝜌1 ∪ 𝐷𝐼𝜌2 = {𝑎, 𝑏, 𝑐}, meaning that 𝑎, 𝑏, 𝑐 are the definitely-
initialized variables for the entire program, and 𝑃𝑈𝜌 = 𝑃𝑈𝜌1 ∪ (𝑃𝑈𝜌2 \ 𝐷𝐼𝜌1 ) = {} ∪ ({𝑎, 𝑏, 𝑑, 𝑒} \
{𝑎, 𝑏}) = {𝑑, 𝑒}, meaning that only 𝑑 and 𝑒 are uses of possibly-uninitialized variables; these two
variables are used at Lines 9 and 12, respectively. In contrast, 𝑎 and 𝑏 in 𝑃𝑈𝜌2 are removed from
𝑃𝑈𝜌 because these two variables are initialized in 𝜌1, as indicated by 𝐷𝐼𝜌1 .

3 Our Method
In this section, we present an overview of our method for incremental APA, which has two main
components. The first component consists of techniques for incrementally updating the path
expression, to respond to changes of the program. The second component consists of techniques
for incrementally interpreting the path expression, to obtain the program facts of interest.
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Algorithm 1 𝐹 ← Incremental_APA(𝑃, 𝑃 ′, 𝜌 ′, 𝐹 ′))
Δ𝑃 ← Diff (𝑃, 𝑃 ′)
𝜌 ← Compute_PathExpression_Inc (Δ𝑃 , 𝜌

′)
Δ𝜌 ← Diff (𝜌, 𝜌 ′)
𝐹 ← Interpret_PathExpression_Inc (Δ𝜌 , 𝐹

′)
return 𝐹

Algorithm 1 shows the top-level procedure of our method. In addition to 𝑃 , the new program,
the input of our procedure includes 𝑃 ′, a previous version of the program, together with its path
expression 𝜌 ′ and the set 𝐹 ′ of program facts. The output of our procedure is 𝐹 , the set of program
facts for 𝑃 . Internally, the procedure goes through two steps. First, it computes the difference
between 𝑃 and 𝑃 ′, denoted Δ𝑃 , and leverages it to update 𝜌 ′ to obtain 𝜌 . Next, it computes the
difference between 𝜌 and 𝜌 ′, denoted Δ𝜌 , and leverages it to update 𝐹 ′ to obtain 𝐹 .

When Δ𝑃 is small, our goal is to keep Δ𝜌 small as well. We accomplish this by using a carefully-
designed data structure for representing 𝜌 and carefully-designed techniques for updating it.
Similarly, when Δ𝜌 is small, our goal is to keep the change from 𝐹 ′ to 𝐹 small as well. Our techniques
for supporting these incremental updates will be presented in Sections 4 and 5. For now, we shall
use an example to illustrate the potential of our method in speeding up the analysis.
The Changed Program. Assuming that a new assignment statement, b = a+5, is added to Line 5
of the example program in Fig. 2, which leads to the new program in Fig. 4. For ease of presentation,
we keep the line numbers of the two programs the same. Thus, in the new control flow graph, the
only change is adding node 𝑛5 and edge 𝑒5, both of which are highlighted in red color in Fig. 4.

1 int a, b, c, d, e;
2 a = 5;
3 b = a + 5;
4 while (a < 20){
5 b = a + 5; //added
6 if (a > 0)
7 d = b;
8 else a = a + 10;
9 printf(''\%d'', d);
10 }
11 c = a + 1;
12 printf(''\%d'', b+c+e);
13 return;
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Fig. 4. The changed example program on the left-hand side and its control flow graph on the right-hand side.

Updating the Path Expression. Instead of computing the path expression 𝜌 for the new program
𝑃 from scratch, we choose to update the path expression 𝜌 ′ for the previous program 𝑃 ′. In this
context, 𝜌 ′ refers to the previous path expression tree shown in Fig. 3 while 𝜌 refers to the new path
express tree shown in Fig. 5. How to carefully design the data structure and techniques to minimize
the difference Δ𝜌 = Diff(𝜌, 𝜌 ′) is an important research question since they may have significant
effects. For example, whether the new edge 𝑒5 is combined with 𝑒4 first or with 𝑒6 and 𝑒′6 first
can result in different performances. Although these two options lead to semantically-equivalent
regular expressions, but the runtime performance of APA may be different: combining 𝑒5 with 𝑒4
first will lead to a faster APA because the tree’s height will be shorter.

For the tree shown in Fig. 5, after adding 𝑒5, only one more node in the tree needs to be added; it
is the ⊗ operator used to combine 𝑒4 and 𝑒5. In other words, the incremental update changes only
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Fig. 5. Updating the program properties by interpreting the affected nodes in the path expression. Only two
nodes need to be added; they are the nodes for 𝑒5 and 𝑒4 ⊕ 𝑒5. Furthermore, only four nodes need to update
the associated program facts; these four nodes are shown in red color.

2/26 of the nodes of the path expression tree. This is the reason why incremental update has the
potential to drastically reduce the analysis time.
Updating the Program Facts.After adding 𝑒5 and the ⊗ operator (for 𝑒4⊗𝑒5) to the path expression
tree, we must interpret the path expression to obtain the new program facts. Since most of the
program facts computed for the previous path expression 𝜌 ′ remain unchanged, our method only
needs to update the program facts associated with 4/26 of the nodes in the path expression tree.

In Fig. 5, these four nodes (whose program facts need to be updated) are highlighted in red color.
We show how these program facts are updated in the table below.

Path expression Definitely-initialized variables Uses of possibly-uninitialized variables Changed the facts
𝑒5 𝐷𝐼𝑒5 = {𝑏} 𝑃𝑈𝑒5 = {𝑎} yes
𝑒4𝑒5 𝐷𝐼𝑒4𝑒5 = {𝑏} 𝑃𝑈𝑒4𝑒5 = {𝑎} yes
𝑒4𝑒5 (𝑒6𝑒7 + 𝑒′6𝑒8 )𝑒9 𝐷𝐼𝑒4𝑒5 (𝑒6𝑒7+𝑒′6𝑒8 )𝑒9

= {𝑏} 𝑃𝑈𝑒4𝑒5 (𝑒6𝑒7+𝑒′6𝑒8 )𝑒9
= {𝑎,𝑏,𝑑 } yes

(𝑒4 (𝑒6𝑒7 + 𝑒′6𝑒8 )𝑒9 )∗ 𝐷𝐼 (𝑒4𝑒5 (𝑒6𝑒7+𝑒′6𝑒8 )𝑒9 )∗
= {} 𝑃𝑈 (𝑒4𝑒5 (𝑒6𝑒7+𝑒′6𝑒8 )𝑒9 )∗

= {𝑎,𝑏,𝑑 } no

This example shows that the time taken to update program facts after the addition of a terminal
node in the tree may be lower than𝑂 (ℎ(𝜌)), whereℎ(𝜌) is the height of the updated path expression
tree. The reason why the complexity is𝑂 (ℎ(𝜌)) in general is because ℎ(𝜌) is the length of the path
from the root to any terminal node. In the above example, the height of the tree is 6, but due to
early termination of the updating process, only 4 of the nodes (on the root-to-𝑒5 path) are updated.
Advantages of Incremental APA. We have illustrated the main advantage of incremental APA,
which is the significantly-higher analysis speed. We will show, through experimental evaluation
in Section 7, that the speedup can be more than 160× to 4761×, depending on the actual type of
analysis performed by APA.

Another advantage of incremental APA is that the method is inherently compositional. That is,
subexpressions in the tree may be updated in isolation, before their results are combined using
algebraic rules. It allows the method to be easily parallelized. For example, if the program change
Δ𝑃 = Diff(𝑃, 𝑃 ′) involves multiple root-to-leaf edges, meaning that multiple paths need to be
recomputed in the tree, in addition to the red root-to-𝑒5 path in Fig. 5, it is possible to handle these
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Fig. 6. The two basic structures used for hierarchical computation of the path expression.

paths in parallel. This is an advantage of incremental APA. Iterative program analysis does not
support such parallelization because its computation is inherently sequential: every application of
a transfer function depends on its input values.

4 Incrementally Computing Path Expression
In this section, we first review the existing algorithms for computing path expression, and then
present our new algorithm for incrementally computing path expression.

4.1 The Non-incremental Algorithm
Classic APA methods [6, 14, 28] rely on various algorithmic techniques to compute path expression
efficiently. A common theme is batch processing of the program paths of interest. Different ways of
batch processing have led to algorithms with different time complexities. For example, Tarjan [28]
used dominator tree for batch processing, while Conrado et al. [6] used tree-decomposition to-
gether with a centroid-based divide-and-conquer algorithm. However, as mentioned earlier, these
algorithmic techniques are not suitable for incremental computation.
Instead, our method uses the algorithm presented by Kincaid et al. [14] as its baseline. Before

extending the baseline for incremental computation in the next subsection, we briefly review
the algorithm. The algorithm relies on the notion of subprogram, which is a maximal contiguous
sequence of basic blocks within a program that does not contain branches or loop structures.
Computing the path expression for a subprogram is easy because there is only one program path.

Next, the algorithm applies structural transformations to the program, based on the two pattern-
matching-and-replacement rules shown in Fig. 6. The first one, called Basic Structure 1, removes
loops. The second one, called Basic Structure 2, removes branches.

To efficiently update path expressions, we propose to represent path expression using a segment
tree, which is a generic data structure for storing information about intervals or segments. A
segment tree can efficiently decide which of the stored segments contains an element . It also
maintains a relatively balanced tree, which supports efficient incremental changes.
Algorithm 2 shows the baseline (non-incremental) procedure for building the path expression

tree, also called the APA-Tree in the remainder of this paper. The algorithm has a time complexity
of 𝑂 (𝑛), where 𝑛 = |𝜌 | is the size of the path expression.

4.2 The Incremental Algorithm
We support two classes of program changes: changes within a subprogram and changes in the basic
structures used to combine subprograms, as shown in Fig. 6. Since a subprogram is a linear sequence
of edges, changes within a subprogram are
• 𝑎𝑑𝑑 (𝑒′, 𝑒) represents adding edge 𝑒 right after the existing edge 𝑒′;
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Algorithm 2 Building the tree 𝑇 for representing the path expression 𝜌 .
procedure BuildTree( path expression 𝜌 )

𝑇 ← ∅
if |𝜌 | = 1 then

𝑇 .𝑣𝑎𝑙𝑢𝑒 ← 𝜌 //create a leaf node for an edge 𝑒 ∈ 𝐸 in the control flow graph in the program
else

𝑚𝑖𝑑 ← |𝜌 |
2

𝑇 .𝐿𝑒 𝑓 𝑡𝐶ℎ𝑖𝑙𝑑 ← BuildTree(𝜌 [1,𝑚𝑖𝑑 ] )
𝑇 .𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 ← BuildTree(𝜌 [𝑚𝑖𝑑+1,|𝜌 | ] )
𝑇 .𝑉𝑎𝑙𝑢𝑒 ← merge(𝑇 .𝐿𝑒 𝑓 𝑡𝐶ℎ𝑖𝑙𝑑,𝑇 .𝑅𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 ) //creating an internal node for the ⊗, ⊕ or ⊛ operator

end if
return𝑇

end procedure

• 𝑑𝑒𝑙𝑒𝑡𝑒 (𝑒) represents deleting edge 𝑒; and
• 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑒) represents changing the semantics of edge 𝑒 , e.g., by changing the data flow
associated with 𝑒 but without changing the control flow.

Among these three changes, 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑒) does not change the path expression at all. Therefore, our
incremental algorithm only needs to handle 𝑎𝑑𝑑 (𝑒′, 𝑒) and 𝑑𝑒𝑙𝑒𝑡𝑒 (𝑒).
Adding Edges. Our algorithm takes two steps. The first step is finding the existing edge 𝑒′, and
the second step is inserting the new edge 𝑒 after 𝑒′. A special case is 𝑒′ = 𝜖 (empty string), when 𝑒
is inserted at the beginning of the subprogram. To make the algorithm efficient, we must satisfy
the following properties: (1) every internal node is the summary of all leaf nodes of its subtree, and
(2) we must minimize the modification to keep the tree relatively balanced.

Toward this end, we implement 𝑎𝑑𝑑 (𝑒′, 𝑒) by splitting the existing leaf node of 𝑒′. Consider
adding edge 𝑒5 in Fig. 5 as an example. In this case, the existing leaf node for 𝑒4 is split into two leaf
nodes, one for 𝑒4 and the other for 𝑒5. At the same time, a new ⊗ node is added to represent 𝑒4 ⊗ 𝑒5.
After that, we must traverse the path from the new leaf node 𝑒5 to root, and mark all nodes on this
path as modified. The reason is because their corresponding program facts may no longer be valid.
In Section 5, we will present our algorithm for incrementally computing the new program facts.
Deleting Edges. Since deleting an edge may drastically change the tree structure, we propose to
do so lazily. That is, 𝑑𝑒𝑙𝑒𝑡𝑒 (𝑒) marks the leaf node 𝑒 as deleted, without actually deleting it from the
tree. Marking 𝑒 as deleted allows our algorithm for interpreting the path expression to ignore this
leaf node. After that, we must also traverse this leaf-to-root path and mark all nodes on the path as
modified, since their corresponding program facts may no longer be valid.
The path expression tree (or APA-Tree) is expected to be balanced with a height of 𝑂 (log𝑛). If

changes are random, the tree height is expected to remain 𝑂 (log𝑛) due to balanced properties of
the segment tree. However, in real-world applications, changes are almost never random, which
means that after many rounds of edge addition and deletion, the tree may no longer be balanced.
Thus, we propose to re-balance it when certain conditions are met. Noticed that there can always
be pathological programs with deeply embedded loops, and deeply embedded branches. However,
such software code would not be common, and they would be too hard for developers to understand
or debug. Thus, we do not optimize for such extreme cases.
Re-balancing the Tree. We maintain a weight-balanced tree, which is a binary tree that as-
sociates each node with a weight of its subtree. In other words, each node has the following
fields: node type, node value, left child, right child, and the weight of the subtree. The weight
of a node 𝑥 is defined as the number of leaf nodes inside its subtree. By definition, the weight
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satisfies the following property: 𝑥 .𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑥 .𝑙𝑒 𝑓 𝑡 .𝑤𝑒𝑖𝑔ℎ𝑡 + 𝑥 .𝑟𝑖𝑔ℎ𝑡 .𝑤𝑒𝑖𝑔ℎ𝑡 . If a node 𝑥 satisfies
min(𝑥 .𝑙𝑒 𝑓 𝑡 .𝑤𝑒𝑖𝑔ℎ𝑡, 𝑥 .𝑟𝑖𝑔ℎ𝑡 .𝑤𝑒𝑖𝑔ℎ𝑡) ≥ 𝛼 · 𝑥 .𝑤𝑒𝑖𝑔ℎ𝑡 , we say its subtree is 𝛼-weight-balanced, where
0 < 𝛼 ≤ 1

2 . The height ℎ of a 𝛼-weighted-balanced tree satisfies ℎ ≤ log 1
1−𝛼

𝑛 =𝑂 (log𝑛).
Whenever the subtree of a node 𝑥 is no longer 𝛼-weight-balanced, we re-balance it. This is not a

trivial task. Although rotation is the most commonly-used re-balancing strategy in binary search
trees, it is not a good strategy for our application. The reason is because rotation may drastically
change the shape of the tree even for small changes to the path expression. Thus, we focus on
localizing the subtree that needs to be rebalanced. Once we find it, we simply rebuild the tree 𝑇
from path expression 𝜌 using Algorithm 2. Below are the two conditions that trigger re-balancing.

• After adding an edge, we traverse the leaf-to-root path and find any node 𝑥 satisfying
min(𝑥 .𝑙𝑒 𝑓 𝑡 .𝑤𝑒𝑖𝑔ℎ𝑡, 𝑥 .𝑟𝑖𝑔ℎ𝑡 .𝑤𝑒𝑖𝑔ℎ𝑡) < 𝛼 · 𝑥 .𝑤𝑒𝑖𝑔ℎ𝑡 , and rebuild its subtree.
• After deleting an edge, we traverse the leaf-to-root path and find any node 𝑥 satisfying
𝑥 .𝑚𝑎𝑟𝑘 ≥ (1 − 𝛼) · 𝑥 .𝑤𝑒𝑖𝑔ℎ𝑡 , and rebuild its subtree. Here 𝑥 .𝑚𝑎𝑟𝑘 is the number of marked
leaf nodes inside 𝑥 ’s subtree.

In general, every operation that affects the tree structure may invoke the rebuild procedure.
Handling Changes in Basic Structures. Changes in basic structures can also be classified into
adding and deleting edges in the basic structures as shown in Fig. 6, where the edge may be the
self-loop on the left-hand side, or a branch on the right-hand side. Adding an edge in a basic
structure leads to a local modification of the path expression tree. Specifically, in Basic Structure
1, adding the edge 𝑒1 will change the path expression from 𝑒2 to 𝑒∗1𝑒2, meant to be interpreted
as (𝑒1)⊛ ⊗ 𝑒2. In Basic Structure 2, adding the edge 𝑒1 will change the path expression from 𝑒2 to
(𝑒1 + 𝑒2), meant to be interpreted as (𝑒1 ⊕ 𝑒2).
Deleting an edge in a basic structure is implemented in the same way as deleting an edge within

a subprogram. That is, we mark the tree-node associated with the edge as deleted, without actually
removing it from the tree. However, the semantic function associated with the affected tree-nodes
must be changed. Our key idea is to leverage the property of 1 and 0 in the semantic algebra. Recall
that 1 and 0 are the maximal and minimal elements in the universe of program facts. We define the
following rules for deleting the edge 𝑒:

• 𝑒′⊗𝑒 → 𝑒 ⊗1, meaning that for the sequence operator, we treat 𝑒 as an unconditional transfer
of control, which does not affect the data flow;
• 𝑒′ ⊕ 𝑒 → 𝑒 ⊕ 0, meaning that for the choice operator, we treat 𝑒 as no transfer of control; and
• 𝑒⊛ → 1⊛ , meaning that for the iteration operator, we treat 𝑒 as an empty loop.

5 Incrementally Interpreting Path Expression
In this section, we present our method for incrementally interpreting path expression to compute
the program facts of interest.

In classic APA methods, this problem is equivalent to the expression parsing problem, for which
the most common algorithm relies on two stacks: an operator stack 𝑆1 and an operand stack 𝑆2.
By scanning the regular expression and operating on stacks 𝑆1 and 𝑆2, one can compute the final
program facts. However, this method is inherently non-incremental; for every newly updated path
expression, the program facts are computed from scratch.
The Modified Nodes in Tree 𝑇 . Incrementally computing path expression as described in the
previous section will modify some leaf-to-root paths in the path expression tree𝑇 . According to our
algorithm, nodes on these modified paths are marked as modified. For each node 𝑥 in the tree 𝑇 , if
the 𝑥 .modified flag is set, it means the program facts associated with the node must be recomputed.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 65. Publication date: January 2025.



An Incremental Algorithm for Algebraic Program Analysis 65:15

In contrast, for all other nodes whose modified flags are not set, the program facts associated with
them are still valid and thus do not need to be recomputed.
The Universe of Program Facts. Depending on the actual type of analysis performed by APA,
the universe of program facts may vary significantly. Recall that if the goal is to compute the use of
possibly-uninitialized variables, the universe of program facts may be defined as 𝐷 = (𝐷𝐼, 𝑃𝑈 ) as
shown in Section 2.
Regardless of how 𝐷 is defined, there is a semantic function for each edge 𝑒 ∈ 𝐸 of the control

flow graph, denotedD⟦⟧ : 𝐸 → 𝐷 . Since each 𝑒 ∈ 𝐸 corresponds to a leaf node of the tree𝑇 ,D⟦𝑒⟧
returns the set of program facts for the leaf node. Then, for each internal node of the tree𝑇 , labeled
⊗, ⊕ or ⊛, there is a semantic function for computing the program facts, by merging the program
facts of the child nodes.
The Incremental Algorithm. Algorithm 3 shows our procedure for incrementally interpreting
the path expression, by recomputing only program facts associated with the modified nodes of
the tree 𝑇 . As shown in the algorithm, if 𝑇 .modified is false, the current node and its subtree are
skipped since its program facts are still valid. We assume that 𝑇 .fact stores the program facts for
the subtree 𝑇 .

Algorithm 3 Incrementally computing program facts for modified nodes in path expression tree 𝑇 .
procedure InterpretTree( path expression tree𝑇 )

if 𝑇 .modified then
if 𝑇 .type = leaf then

𝑇 .fact ← computeProgramFacts(𝑇 ) //for each edge 𝑒 ∈ 𝐸 in the control flow graph
else

InterpretTree(𝑇 .LeftChild)
InterpretTree(𝑇 .RightChild)
𝑇 .fact ← mergeProgramFacts(𝑇 .LeftChild .fact,𝑇 .RightChild .fact ) //for ⊗, ⊕ or ⊛ operator

end if
end if
return

end procedure

If 𝑇 .modified is true, the current node and its subtree are processed recursively. There are two
cases. The first case is when 𝑇 is a leaf node. In this case, we compute program facts for 𝑇 .fact
using the semantic function defined for each edge 𝑒 ∈ 𝐸 of the control flow graph. The second case
is when 𝑇 is an internal node. In this case, we compute program facts for 𝑇 .fact using the semantic
functions defined for the ⊗, ⊕ and ⊛ operators.

6 Mathematical Properties of Incremental APA
In this section, we show that when the semantic algebra satisfies certain conditions, our method
for incremental APA has some nice mathematical properties. We also present the semantic algebras
for two other applications: reaching definition analysis and constant-time analysis.

6.1 Uniqueness of the Analysis Result
While our method for efficiently conducting incremental APA is applicable to any kind of properly-
defined semantic algebras, in general, the analysis result is not unique since it may be affected
by the order in which results of subexpressions are combined. This is somewhat inconvenient in
theory and may also become significant in practice. However, if the semantic algebra is a Kleene
algebra [15], this issue is avoided because Kleene algebra guarantees that the analysis result of
APA is unique.
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Furthermore, a large number of practically-important program analysis problems can be imple-
mented using Kleene algebra; they include all three analyses used by our experimental evaluation.
For these analyses, our incremental APA guarantees to return the same result as the baseline
(non-incremental) APA while being orders-of-magnitude faster.
Kleene Algebra. Kleene algebra is an algebraic system ⟨𝐴, ⊗, ⊕,⊛, 1, 0⟩ defined as follows. Given
the natural order ≤ such that 𝑎 ≤ 𝑏 iff 𝑎 ⊕ 𝑏 = 𝑏, we say that 𝐴 is a Kleene algebra if the following
properties are satisfied for all 𝑎, 𝑏, 𝑐 ∈ 𝐴:
• Associativity: 𝑎 ⊕ (𝑏 ⊕ 𝑐) = (𝑎 ⊕ 𝑏) ⊕ 𝑐 and 𝑎 ⊗ (𝑏 ⊗ 𝑐) = (𝑎 ⊗ 𝑏) ⊗ 𝑐 .
• Distributivity: 𝑎 ⊗ (𝑏 ⊕ 𝑐) = (𝑎 ⊗ 𝑏) ⊕ (𝑎 ⊗ 𝑐) and (𝑏 ⊕ 𝑐) ⊗ 𝑎 = (𝑏 ⊗ 𝑎) ⊕ (𝑐 ⊗ 𝑎).
• Identity: 𝑎 ⊕ 0 = 𝑎 and 1 ⊗ 𝑎 = 𝑎 ⊗ 1 = 𝑎.
• Commutativity: 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎.
• Idempotence: 𝑎 ⊕ 𝑎 = 𝑎.
• Annihilation: 𝑎 ⊗ 0 = 0 ⊗ 𝑎 = 0.
• Unfolding: 1 ⊕ 𝑎 ⊗ (𝑎⊛) = 1 ⊕ (𝑎⊛) ⊗ 𝑎 = 𝑎⊛ .
• Induction: 𝑎 ⊗ 𝑏 ≤ 𝑏 =⇒ 𝑎⊛ ⊗ 𝑏 ≤ 𝑏 and 𝑏 ⊗ 𝑎 ≤ 𝑏 =⇒ 𝑏 ⊗ 𝑎⊛ ≤ 𝑏.

The reason why Kleene algebra guarantees that the analysis result is unique is because of the
associative law, which makes APA compositional: it allows the program to be divided into compo-
nents, through the ⊗ operator within a subprogram or the ⊕ operator outside of a subprogram;
furthermore, the order for combining components does not affect the result.
The Associative Law. To see how important the associative law is, consider removing it from
Kleene algebra and adding the following properties, thus getting a non-associative semi-ring:
• Commutative monoid for ⊕: 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎, (𝑎 ⊕ 𝑏) ⊕ 𝑐 = 𝑎 ⊕ (𝑏 ⊕ 𝑐) and 𝑎 ⊕ 0 = 𝑎.
• Magma with unit element for ⊗: (𝑎 ⊗ 𝑏) ⊗ 𝑐 ≠ 𝑎 ⊗ (𝑏 ⊗ 𝑐) and 𝑎 × 1 = 𝑎.

Since this new algebraic system no longer guarantees a commutative monoid for ⊗, the corre-
sponding APA must interpret path expression in a certain order. For example, to compute the
use of possibly-uninitialized variables, APA must interpret the left subexpression before the right
subexpression. In this sense, it behaves more like iterative program analysis.
Pre-Kleene Algebra. If an algebraic system only satisfies the first six laws of Kleene algebra, it is
called an idempotent semi-ring. If the unfolding and induction laws of Kleene algebra are replaced
by the following weaker properties, the resulting system is called a pre-Kleene algebra:
• Reflexivity: 1 ≤ 𝑎⊛ .
• Extensivity: 𝑎 ≤ 𝑎⊛ .
• Transitivity: 𝑎⊛ ⊗ 𝑎⊛ = 𝑎⊛ .
• Monotonicity: 𝑎 ≤ 𝑏 =⇒ 𝑎⊛ ≤ 𝑏⊛ .
• Unrolling: ∀𝑛 ∈ N, (𝑎𝑛)⊛ ≤ 𝑎⊛ .

With pre-Kleene algebra, different path expressions may lead to different analysis results. In a prior
work, Cyphert et al. [8] proposed to refine path expression to improve its quality. Their method is
complementary to our method in that, one may use their method to build the path expression tree
𝑇 and then start using our method to update and interpret 𝑇 incrementally.

6.2 Star-free Kleene Algebra
While studying the mathematical properties of Kleene algebra and its variants, we realize that many
practical data-flow analysis problems do not really need the Kleene star (or iteration) operator. For
these analysis problems, the semantic functions for ⊗, ⊕ and ⊛ operators satisfy the following
relation: 𝑎⊛ = 1⊕ (𝑎 ⊗𝑎) for all path expression 𝑎 ∈ 𝐴. It means that the impact of iterating through
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a loop 0 to +∞ times is equivalent to (and thus may be captured by) iterating through the loop
exactly twice (denoted 𝑎 ⊗ 𝑎).
• If the loop is skipped all together, the impact is equivalent to 1; and
• after the loop iterates twice (𝑎 ⊗ 𝑎), the resulting program facts stop changing, thus making
the impact of 𝑎 ⊗ 𝑎 equivalent to iterating arbitrarily many times.

Running Example: Computing Reaching Definitions. A large number of practically-important
data-flow analyses can be implemented using semantic algebras that satisfy this property. Below,
we illustrate this property using reaching-definition analysis. Following Kincaid et al. [14], we
define the semantic algebra as follows:
• 𝐷 = (𝐺,𝐾) is the universe of program facts, where𝐺 = 2𝐷𝑒𝑓 captures the subsets of generated
definitions, and 𝐾 = 2𝐷𝑒𝑓 captures the subsets of killed definitions. In other words, 𝐺 and 𝐾
correspond to the gen/kill sets in classic data-flow analysis.
• D⟦𝑒 : 𝑥 := 𝑡⟧ ≜ ({𝑒}, {𝑒′ |𝑒′ defines 𝑥}) is the semantic function for each assignment.
• D⟦𝑒1 × 𝑒2⟧ := (𝐺1, 𝐾1) ⊗ (𝐺2, 𝐾2) ≜ ((𝐺1 \ 𝐾2) ∪𝐺2, (𝐾1 \𝐺2) ∪ 𝐾2).
• D⟦𝑒1 + 𝑒2⟧ := (𝐺1, 𝐾1) ⊕ (𝐺2, 𝐾2) ≜ (𝐺1 ∪𝐺2, 𝐾1 ∩ 𝐾2).
• D⟦𝑒∗⟧ := (𝐺1, 𝐾1)⊛ = (𝐺, ∅).

Based on these definitions, we prove 𝑎⊛ = 1 ⊕ (𝑎 ⊗ 𝑎) holds for all path expression 𝑒𝑎 as follows:

D⟦1 + 𝑒𝑎 × 𝑒𝑎⟧ = (∅, ∅) ⊕ (𝐺,𝐾) ⊗ (𝐺,𝐾)
= (∅, ∅) ⊕ (𝐺,𝐾)
= (𝐺, ∅) =D⟦𝑒∗𝑎⟧

Star-free Kleene Algebra.While it is interesting to know that reaching-definition analysis can
be implemented without the iteration ⊛ operator, a more interesting question (in theory) is how
to precisely characterize the class of analyses that satisfy this property. Toward this end, we take
the definition of Kleene algebra and then replace its unfolding law and induction law with the
following two star-free laws:
• Star-free Unfolding: 1 ⊕ 𝑎 ⊗ 𝑎 = 1 ⊕ 𝑎 ⊕ 𝑎 ⊗ 𝑎 ⊗ 𝑎.
• Star-free Induction: 𝑎 ⊗ 𝑏 ≤ 𝑏 =⇒ 𝑏 ⊕ 𝑎 ⊗ 𝑎 ⊗ 𝑏 ≤ 𝑏 and 𝑏 ⊗ 𝑎 ≤ 𝑏 =⇒ 𝑏 ⊕ 𝑏 ⊗ 𝑎 ⊗ 𝑎 ≤ 𝑏.

We name the resulting algebraic system Star-free Kleene Algebra. Program analyses that can be
implemented using Star-free Kleene Algebra are guaranteed to be efficient, since the impact of a
loop can be computed by iterating through the loop at most twice.

6.3 Constant-Time Analysis
We now present another analysis that we have used to experimentally evaluate our method for
incremental APA. The goal is to detect differences in a program’s execution time that are also
dependent on a secret input. At a high level, it can be viewed as a combination of taint analysis and
execution time analysis. The goal of taint analysis is to compute, for a given secret input, the set of
program variables whose values may be affected by the secret input. The goal of execution time
analysis is to compute, for all program paths from node 𝑠 to node 𝑡 in the control flow graph, the
lower and upper bounds of the time taken to execute these paths.

Since taint analysis is widely known, in the remainder of this section, we focus on the execution
time analysis by presenting the semantic algebra for computing upper/lower bounds of a program’s
execution time.
The Motivating Example. Fig. 7 shows an example program with loops and branches; it is a
modification of the code snippet from Libgcrypt [1], a real cryptographic software program used
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1 int const_time(int secret) {
2 int loop = 0 ,sum = 0, cond;
3 int mask= secret - 1;
4 if (mask) {
5 sum = 0;
6 } else cond = 1;
7 if (cond > 0) {
8 while (loop < 3) {
9 sum += 2;
10 loop++;
11 }
12 } else sum--;
13 return 0;
14 }
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Fig. 7. An example program for applying APA to compute secret-dependent variation in execution time.

Arithmetic Expression 𝑡 ::= constant | 𝑡1 + 𝑡2 | 𝑡1 − 𝑡2 | 𝑡1 ∗ 𝑡2
Boolean Expression 𝑏 ::= true | false | ¬𝑏 | 𝑏1 ∧ 𝑏2 | 𝑏1 ∨ 𝑏2

Statement 𝑆𝑡𝑚𝑡 ::= 𝑥 := 𝑡 | if 𝑏 then 𝑆𝑡𝑚𝑡1 else 𝑆𝑡𝑚𝑡2 | while 𝑏 do 𝑆𝑡𝑚𝑡

Fig. 8. The definition of a simple programming language used to write the program to be analyzed.

in prior work [36] for evaluating constant-time programming techniques. In this program, the
secret input affects mask through data-dependency, which in turn affects cond through control-
dependency. Since cond affects which branch in Lines 7-12 is executed, and the execution time of
these two branches differ, there is a timing side-channel. In other words, by observing the execution
time, an adversary may gain some information about the secret input.

For ease of understanding, we employ a simple time cost model, by first defining a programming
language used to write the program and then assuming that each basic block takes a unit of time to
execute. This is without loss of generality, since the time cost model may be replaced by a more
accurate one without modifying the algorithm. Fig. 8 shows the programming language.
The Semantic Algebra. The universe of program facts is defined as 𝐷 = ( [𝐿𝐵,𝑈𝐵],𝐶), where
𝐿𝐵 ∈ N and 𝑈𝐵 ∈ N represent lower and upper bounds of the execution time, i.e., the minimum
and maximum numbers of basic blocks along program paths of interest, and 𝐶 ∈ 2𝑉𝑎𝑟 is the set of
variables that may control whether the program paths can be executed. Regarding the execution
time interval [𝐿𝐵,𝑈𝐵]: when 𝐿𝐵 =𝑈𝐵, all program paths have the same execution time, indicating
that there is no timing side-channel leakage.When 𝐿𝐵 ≠ 𝑈𝐵, however, there is a timing side-channel
if the difference in execution time is controlled by the secret input.
The semantic function D, which maps a path expression to a set of program facts in 𝐷 =

( [𝐿𝐵,𝑈𝐵],𝐶), is defined as follows, where 𝑒𝑏 represents the expression for the branch condition:

D⟦𝑒⟧ := ( [1, 1], ∅) D⟦𝑒𝑏⟧ := ( [0, 0], {𝑥 |𝑒𝑏 uses 𝑥})
D⟦𝑒1𝑒2⟧ := D⟦𝑒1⟧ ⊗ D⟦𝑒2⟧ D⟦𝑒1 + 𝑒2⟧ := D⟦𝑒1⟧ ⊕ D⟦𝑒2⟧
D⟦𝑒∗⟧ := D⟦𝑒⟧⊛

For 𝐿 = 𝐿1 ⊗ 𝐿2, the semantic function is defined as follows: Let 𝐷𝐿1 = ( [𝐿𝐵1,𝑈 𝐵1],𝐶1) and
𝐷𝐿2 = ( [𝐿𝐵2,𝑈 𝐵2],𝐶2), we have
𝐷𝐿 = ( [𝐿𝐵1 + 𝐿𝐵2,𝑈 𝐵1 +𝑈𝐵2],𝐶1 ∪𝐶2).
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This is because sequential composition (⊗) will not generate differences in execution time; instead,
the total time is the summation of the individual time. Furthermore, since all of the variables in 𝐶1
and 𝐶2 may affect whether we can execute the program path, the two sets are united together.
For 𝐿 = 𝐿1 ⊕ 𝐿2, the semantic function is defined by assuming that 𝑇𝐿 is the precomputed set of
secret-tainted variables; we omit the description of taint analysis since it is well understood. Let
𝐿1 = ( [𝐿𝐵1,𝑈 𝐵1],𝐶1) and 𝐿2 = ( [𝐿𝐵2,𝑈 𝐵2],𝐶2), we have

𝐷𝐿 =

{
( [min(𝐿𝐵1, 𝐿𝐵2),max(𝑈𝐵1,𝑈 𝐵2)],𝐶1 ∪𝐶2) if (𝐶1 ∪𝐶2) ∩𝑇𝐿 ≠ ∅
([𝐿𝐵1,𝑈 𝐵1], ∅) otherwise

That is, if the branch statement combining 𝐿1 and 𝐿2 (including the branch condition as well as
statements inside the then-branch and else-branch) is controlled by a secret-tainted variable, it may
take different paths based on the secret value, potentially introducing side-channel leaks. In this
case, the time interval accounts for both branch executions. Otherwise, the time difference will
not lead to side-channel leakage; thus, we ignore the time difference by arbitrarily taking the time
from one branch (𝐿1 in this case).
For 𝐿 = 𝐿⊛ , the semantic function is defined as follows:

𝐷𝐿 =

{
( [0,∞], ∅) if (𝐶𝐿) ∩𝑇𝐿 ≠ ∅
([0, 0], ∅) otherwise

The situation is similar to ⊕: when the loop condition is not controlled by a secret-tainted variable,
the time difference will not lead to side-channel leakage; thus, we ignore the time difference by
setting the time interval to [0, 0]; otherwise, we set the time interval to [0,∞] to indicate the
maximal difference in execution time.
Applying to the Motivating Example. Consider the example program in Fig. 7.
• For the ⊗ operator, assuming that we have D⟦𝑒1𝑒2𝑒3 (𝑒4𝑒5 + 𝑒′4𝑒6)⟧ = ( [4, 4], {𝑚𝑎𝑠𝑘}) and
D⟦(𝑒7 (𝑒8𝑒9𝑒10)∗𝑒′8 + 𝑒′7𝑒12)𝑒13⟧ = ( [2,∞], {𝑐𝑜𝑛𝑑, 𝑙𝑜𝑜𝑝}), based on the semantic function, we
get the final result ( [6,∞], {𝑚𝑎𝑠𝑘, 𝑐𝑜𝑛𝑑, 𝑙𝑜𝑜𝑝}), indicating that there is timing side-channel
leakage in this program fragment.
• For the ⊕ operator, assuming that we have D⟦𝑒7 (𝑒8𝑒9𝑒10)∗𝑒′8⟧ = ( [1,∞], {𝑐𝑜𝑛𝑑, 𝑙𝑜𝑜𝑝}) and
D⟦𝑒′7𝑒12⟧ = ( [1, 1], {𝑐𝑜𝑛𝑑}), since 𝑐𝑜𝑛𝑑 is a secret-tainted variable, we maximize the time
difference to get the final result ( [1,∞], {𝑐𝑜𝑛𝑑, 𝑙𝑜𝑜𝑝}).
• For the ⊛ operator, assuming that we already haveD⟦𝑒8𝑒9𝑒10⟧ = ( [2, 2], {𝑙𝑜𝑜𝑝}) for the loop
body, thus we get the final result D⟦𝑒8𝑒9𝑒10⟧⊛ = ( [0,∞], ∅).

At this moment, it is worth noting that the algebra is not a star-free Kleene algebra. If all the
conditional variables used in branching conditions are tainted, the Kleene unfolding rule would still
hold here. However, as this above analysis focuses on counting basic blocks, which is significantly
different from classic data-flow analysis defined using the gen/kill sets, it is not a star-free analysis.

7 Experiments
We have implemented the proposed method in a software tool that conducts algebraic program
analysis for Java programs. The tool builds upon the work of Conrado et al. [6]: it takes the Java
bytecode as input and returns the analysis result as output. Internally, it leverages Soot to construct
the control flow graph. Our implementation of the incremental APA algorithm, consisting of
updating the path expression and interpreting the path expression, is written in 7,640 lines of C++
code. To facilitate the experimental comparison, we implemented the baseline APA in the same
software tool where we implemented our new method. In addition, we implemented the method
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Table 1. Statistics of the benchmark programs.

Program # LoC # Variables # CFG Nodes # CFG Edges # Definitions # Uses
hsqldb 23,362 12,352 23,362 24,739 15,946 47,690
avrora 87,173 47,449 87,173 85,681 60,816 172,410
xalan 22,314 11,780 22,314 23,595 15,268 45,555
pmd 191,672 100,688 191,672 198,773 127,223 385,537
fop 220,726 119,419 220,726 221,381 163,890 459,354
luindex 41,372 20,815 41,372 42,907 28,692 80,503
bloat 81,557 46,140 81,557 84,408 55,239 161,960
jython 107,115 56,830 107,115 107,450 70,551 207,161
lusearch 47,123 23,403 47,123 48,848 33,030 90,702
eclipse 73,869 39,826 73,869 76,309 47,334 145,280
antlr 43,563 23,847 43,563 45,383 29,121 88,013
sunflow 70,769 38,869 70,769 72,376 55,364 159,305
chart 149,926 79,085 149,926 152,246 104,081 310,694

of Conrado et al. [6] and the classic method of Tarjan [28]; both of these existing methods were
partially implemented as part of the work by Conrado et al. [6], but their implementation only
had the (first) step of computing path expression. We added the (second) step of interpreting path
expression for these two existing methods. Thus, we are able to have a fair comparison of all four
methods: our incremental APA, baseline APA, the method of Conrado et al. [6], and the classic
method of Tarjan [28].
We implemented APA by defining the semantic algebras and semantic functions to support

three types of analyses, consists of two elementary analyses and one compound analysis. The
two elementary analyses are detecting the use of possibly-uninitialized variables and computing
reaching definitions. The compound analysis is designed to check whether a program has timing
side-channel leakage. We call it a compound analysis because it consists of a taint analysis and a
time analysis: the taint analysis checks if branching conditions are secret-dependent, while the
time analysis checks if all branches have the same execution time.

7.1 Benchmark Statistics
The benchmark programs used in our experimental evaluation come from the DaCapo [5] bench-
mark suite, consisting of the compiled Java bytecode of 13 real-world applications. These are
open-source applications implementing a diverse set of functionalities. Table 1 shows the statistics
of these benchmark programs. Columns 1-3 show the name, the number of lines of Java code, and
the number of variables of the program. Columns 4-5 show the number of nodes and the number of
edges of the corresponding control flow graph (CFG). Columns 6-7 show the number of definitions
and the number of uses of program variables. Here, a definition means a write to a variable by a
program statement, and a use means a read from a variable.
Changes made to benchmark programs are generated automatically by following established

practice [26, 27]. Since we use Soot to transform Java bytecode of each program to a CFG before
conducting APA, program instruction-level changes correspond to CFG edge insertions, deletions,
and edge content modifications. Note that unlike a standard CFG where nodes are labeled with
basic blocks, in our CFG, basic blocks are moved from nodes to their outgoing edges as illustrated
in Fig. 2. Thus, we randomly generate program changes until the number of affected basic blocks
reaches 2%, 4%, 6%, . . . , 20%. These percentages are consistent with our stated goal of conducting
APA incrementally in response to small and frequent changes of the program.

More specifically, we generate changes by randomly selecting one basic block at a time, and then
performing the following operations: (i) delete the basic block, which may affect both control and
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data flows; (ii) add assignment statements in the basic block, which will be chosen from existing
or new program variables with different possibilities and may affect the data flow; and (iii) add a
new basic block behind the chosen basic block with randomly assigned data flow facts, which may
affect both control and data flows.

7.2 Experimental Setup
We conducted all of our experiments on a computer with Intel Core i7-8700 CPU and 32GB memory,
running the Ubuntu 22.04 operating system. Our experiments were designed to answer the following
research questions (RQs):

RQ 1. Is our method for conducting APA incrementally significantly more efficient than the baseline
APA and existing methods of Conrado et al. [6] and Tarjan [28]?

RQ 2. How does each of the two technical innovations (incrementally computing path expres-
sion and incrementally interpreting path expression) contribute to the overall performance
improvement?

RQ 3. How does the size of program change affect the performance improvement of our method?

7.3 Results for RQ 1
To answer RQ 1, we experimentally compared the performance of all four methods (incremental
APA, baseline APA, Conrado et al. [6] and Tarjan [28]) on all benchmark programs.

Table 2 shows the results, divided into three subtables for the three types of analyses. Column 1
shows the program name. Columns 2-4 show the result of incremental APA, including the size of
the path expression tree 𝑇 , the size of 𝐹 for storing program facts, and the total analysis time in
milliseconds (ms). Columns 5-6 show the time of baseline APA and, in comparison, the percentage
of time taken by incremental APA; the percentage equals the time of incremental APA divided by
the time of baseline APA. Columns 7-10 show the time of classic method of Tarjan [28], the time of
recent method of Conrado et al. [6], and the percentages of time taken by incremental APA.
In addition to the individual results for the 13 benchmark programs, Table 2 also shows the

aggregated total at the bottom of the three subtables. Overall, our method is significantly faster
than the other three methods. For reaching definitions, the total time of incremental APA is 43.777
ms, which is only 0.623% of the 7,022.096 ms taken by baseline APA. In other words, the speedup
is 160×. For the use of possibly-uninitialized variables and constant-time analysis, the speedup is
235× and 4761×, respectively. The result demonstrates the effectiveness of our proposed techniques
for incrementally computing path expression and computing program properties.

The result also shows that our baseline APA is as competitive as the fast APA method of Tarjan;
they have similar total analysis time (7,022.096 ms versus 7,121.912 ms). In contrast, the time taken
by the most recent APA method of Conrado et al. [6] is significantly longer (900,043.082 ms); this
should not be surprising because the method was optimized for solving a different problem, i.e.,
how to answer a large number of queries in nearly constant time for a fixed program. Toward this
end, the method shares the cost of answering all queries by precomputing a lot of information,
which slows down the computation of path expression by more than 100 times.

For these experiments, the size of program change was set to 4%, although due to the nature of
the three different analyses, the 4% change applied to the programs are different for each analysis.
Since existing APA methods were not designed to efficiently handle program changes, even for
a slightly modified program, these methods would have to recompute the path expression from
scratch, whereas our method directly updates the existing path expression. This is the reason why
our method takes only a tiny fraction of the time.
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Table 2. Comparing our method with the baseline (non-incremental) and two existing APA methods [6, 28]
for solving three types of program analysis problems.

Reaching Definitions

Program Incremental APA Baseline APA Tarjan [28] Conrado et al. [6]
expression size property size time (ms) time (ms) % time (ms) % time (ms) %

antlr 19,324 24,161 6.921 319.969 2.163 328.199 2.109 30,290.090 0.023
luindex 10,388 11,819 1.159 84.743 1.367 86.720 1.336 62,226.830 0.002
avrora 2,174 2,458 0.222 7.734 2.868 8.177 2.712 330.622 0.067
jython 50,321 60,175 14.177 2,957.460 0.479 2,972.265 0.477 263,940.250 0.005
fop 4,469 5,004 0.945 43.714 2.161 44.666 2.115 1,978.554 0.048
lusearch 13,683 15,697 2.039 119.962 1.699 123.460 1.651 72,641.133 0.003
pmd 34,405 42,173 9.211 2,974.718 0.310 2,988.893 0.308 393,436.950 0.002
xalan 1,055 1,149 0.274 10.392 2.636 10.683 2.564 280.962 0.097
chart 56,462 66,055 1.578 162.644 0.970 179.290 0.880 25,993.126 0.006
hsqldb 897 984 0.138 8.750 1.575 9.155 1.506 48.702 0.283
bloat 58,552 69,893 3.601 226.068 1.593 242.902 1.483 25,164.876 0.014
eclipse 17,859 20,638 0.824 42.021 1.962 46.672 1.766 6,599.907 0.012
sunflow 49,240 56,270 2.688 63.922 4.205 80.829 3.326 17,111.078 0.016
Total 318,829 376,476 43.777 7,022.096 0.623 7,121.912 0.615 900,043.082 0.005

Use of Possibly-uninitialized Variables

Program Incremental APA Baseline APA Tarjan [28] Conrado et al. [6]
expression size property size time (ms) time (ms) % time (ms) % time (ms) %

antlr 19,324 24,161 4.745 288.278 1.646 207.883 2.283 30,123.315 0.016
luindex 10,388 11,819 0.794 82.782 0.960 64.519 1.231 57,625.330 0.001
avrora 2,174 2,458 0.208 6.952 2.987 5.361 3.874 365.905 0.057
jython 50,321 60,175 10.228 2,907.694 0.352 2,733.111 0.374 305,885.858 0.003
fop 4,469 5,004 0.562 31.848 1.764 12.087 4.647 1,716.860 0.033
lusearch 13,683 15,697 1.320 110.936 1.190 84.267 1.566 73,156.096 0.002
pmd 34,405 42,173 4.338 2,680.677 0.162 2,637.441 0.164 257,063.222 0.002
xalan 1,055 1,149 0.161 14.269 1.129 2.796 5.762 286.831 0.056
chart 56,462 66,055 1.080 145.929 0.740 116.453 0.927 27,280.602 0.004
hsqldb 897 984 0.072 11.251 0.644 0.930 7.785 50.366 0.144
bloat 58,552 69,893 1.827 204.626 0.893 169.574 1.077 25,410.865 0.007
eclipse 17,859 20,638 0.504 38.048 1.323 28.605 1.760 6,776.800 0.007
sunflow 49,240 56,270 2.086 49.031 4.254 41.122 5.072 17,921.532 0.012
Total 318,829 376,476 27.924 6,572.321 0.425 6,104.149 0.457 803,663.583 0.003

Constant-time Execution
Program Incremental APA Baseline APA Tarjan [28] Conrado et al. [6]

expression size property size time (ms) time (ms) % time (ms) % time (ms) %
antlr 19,324 24,161 1.128 2,462.752 0.046 2,470.732 0.046 30,310.704 0.004
luindex 10,388 11,819 0.321 1,803.192 0.018 1,805.190 0.018 57,360.517 0.001
avrora 2,174 2,458 0.111 327.153 0.034 327.660 0.034 352.924 0.031
jython 50,321 60,175 3.089 22,223.328 0.014 22,243.659 0.014 280,295.457 0.001
fop 4,469 5,004 0.195 50.960 0.382 52.478 0.371 2,153.981 0.009
lusearch 13,683 15,697 0.386 491.880 0.078 497.042 0.078 84,238.675 0.000
pmd 34,405 42,173 1.885 5,294.618 0.036 5,308.758 0.036 286,184.554 0.001
xalan 1,055 1,149 0.074 1,285.112 0.006 1,285.595 0.006 288.575 0.026
chart 56,462 66,055 0.317 4,023.013 0.008 4,039.288 0.008 27,269.490 0.001
hsqldb 897 984 0.078 1,442.620 0.005 1,443.114 0.005 45.678 0.170
bloat 58,552 69,893 0.373 345.759 0.108 369.157 0.101 27,002.183 0.001
eclipse 17,859 20,638 0.193 210.871 0.092 214.518 0.090 6,265.510 0.003
sunflow 49,240 56,270 0.252 581.690 0.043 601.567 0.042 18,015.339 0.001
Total 318,829 376,476 8.402 40,542.948 0.021 40,658.756 0.021 819,783.588 0.001
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7.4 Results for RQ 2
To answer RQ 2, we conducted an ablation study by measuring performance improvement con-
tributed by each of the two components of incremental APA: the method for incrementally com-
puting path expression and the method for incrementally interpreting path expression.
Table 3 shows the breakdown of analysis time taken by our method and the baseline APA.

Column 1 shows the program name. Columns 2-4 show the time taken by our method to update
path expression, the time taken to update program facts, and the total time in milliseconds (ms).
Columns 5-7 show the corresponding time taken by the baseline APA. Columns 8-10 show the
percentage of time taken by our method compared with the baseline APA (time for updating path
expression, time for updating program properties, and the total).

Overall, both components in our method contributed to the significant reduction in analysis time.
For example, during incremental APA for reaching definitions, the total analysis time of 43.777 ms
is divided into 5.910 ms for updating path expression and 37.866 ms for updating program facts.
This is in sharp contrast to the total analysis time of 7,022.096 ms for the baseline APA, divided into
6,093.579 ms for computing path expression from scratch and 928.517 ms for computing program
facts from scratch.

For reaching definition, while the overall speedup (7022.096 ms / 43.777 ms) is 160×, the speedup
on computing path expression (6093.579 ms / 5.910 ms) is 1031× and the speedup on computing
program properties (928.517 ms / 37.866 ms) is 24×.
For the use of possibly-uninitialized variables, while the overall speedup (8701.310 ms / 48.799

ms) is 178×, the speedup on computing path expression (6452.497 ms / 29.610 ms) is 217× and the
speedup on computing program properties (2248.813 ms / 19.189 ms) is 117×.
For constant-time analysis, while the overall speedup (40542.948 ms / 8.402 ms) is 4825×, the

speedup on computing path expression (8584.943 ms / 7.891 ms) is 1087× and the speedup on
computing program properties (31958.004 ms / 0.510 ms) is 62662×.

For constant-time execution, the reason why incrementally updating program properties (facts)
has a much larger speedup is because its abstract domain has more dimensions than the other
two analyses. This leads to a much bigger time cost for the baseline APA to recompute for the
unchanged parts of the program.

7.5 Results for RQ 3
The experimental results presented in the previous subsections were obtained using 4% of program
change during incremental APA. To answer RQ 3, we evaluate how the percentage of program
change affects the performance of incremental APA. Toward this end, we varied the percentage
of program change within the range of 2% – 20% and measured the analysis time. Fig. 9 shows
the results of this experiment for computing reaching definitions conducted on the benchmark
program named luindex.
In this figure, the 𝑥-axis represents the percentage of program changes in the range of 0–20%,

and the 𝑦-axis represents the reduced time (i.e., the percentage of time w.r.t. baseline APA) for
updating path expression and updating program facts, respectively. For example, when the size of
program change increases from 2% to 20%, the time for updating path expression increases from
0.30% (of the time taken for computing path expression from scratch) to 0.65%. At the same time,
the time for updating program facts increases from 2% (of the baseline time) to 15%.

To understand the reason why the time changes in the way shown by Fig. 9, we also measured
the percentage of updated nodes in the path expression tree 𝑇 and the percentage of nodes whose
associated facts are also updated. Recall that, for the running example in Fig. 5, these updated
nodes and facts are highlighted in red color; our hypothesis is that, when the program change is
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Table 3. The breakdown of analysis time taken by our method and baseline (non-incremental) APA.

Reaching Definitions

Program Incremental APA (ms) Baseline APA (ms) Ratio (%)
tree fact total tree fact total tree fact total

antlr 0.795 6.127 6.921 199.513 120.456 319.969 0.40 5.09 2.16
luindex 0.238 0.921 1.159 60.083 24.659 84.743 0.40 3.73 1.37
avrora 0.071 0.151 0.222 5.201 2.533 7.734 1.36 5.96 2.87
jython 1.908 12.269 14.177 2,711.405 246.055 2,957.460 0.07 4.99 0.48
fop 0.136 0.809 0.945 10.837 32.877 43.714 1.25 2.46 2.16
lusearch 0.265 1.773 2.039 80.701 39.260 119.962 0.33 4.52 1.70
pmd 1.576 7.634 9.211 2,727.554 247.165 2,974.718 0.06 3.09 0.31
xalan 0.060 0.214 0.274 2.252 8.141 10.392 2.65 2.63 2.64
chart 0.193 1.385 1.578 95.976 66.667 162.644 0.20 2.08 0.97
hsqldb 0.032 0.106 0.138 0.599 8.151 8.750 5.34 1.30 1.58
bloat 0.330 3.271 3.601 151.456 74.612 226.068 0.22 4.38 1.59
eclipse 0.135 0.689 0.824 24.106 17.915 42.021 0.56 3.85 1.96
sunflow 0.171 2.517 2.688 23.896 40.027 63.922 0.72 6.29 4.21
Total 5.910 37.866 43.777 6,093.579 928.517 7,022.096 0.10 4.08 0.62

Use of Possibly-uninitialized Variables

Program Incremental APA (ms) Baseline APA (ms) Ratio (%)
tree fact total tree fact total tree fact total

antlr 0.734 4.011 4.745 200.143 88.135 288.278 0.37 4.55 1.65
luindex 0.220 0.574 0.794 62.547 20.235 82.782 0.35 2.84 0.96
avrora 0.060 0.147 0.208 4.872 2.080 6.952 1.24 7.08 2.99
jython 1.716 8.511 10.228 2,718.280 189.414 2,907.694 0.06 4.49 0.35
fop 0.105 0.457 0.562 11.099 20.750 31.848 0.95 2.20 1.76
lusearch 0.250 1.069 1.320 80.823 30.113 110.936 0.31 3.55 1.19
pmd 0.967 3.371 4.338 2,623.012 57.665 2,680.677 0.04 5.85 0.16
xalan 0.051 0.110 0.161 2.485 11.784 14.269 2.04 0.94 1.13
chart 0.164 0.915 1.080 97.342 48.587 145.929 0.17 1.88 0.74
hsqldb 0.027 0.045 0.072 0.583 10.668 11.251 4.62 0.43 0.64
bloat 0.246 1.580 1.827 153.182 51.443 204.626 0.16 3.07 0.89
eclipse 0.122 0.381 0.504 24.207 13.841 38.048 0.51 2.75 1.32
sunflow 0.162 1.923 2.086 24.052 24.979 49.031 0.68 7.70 4.25
Total 4.827 23.097 27.924 6,002.627 569.694 6,572.321 0.08 4.05 0.42

Constant-time Execution
Program Incremental APA (ms) Baseline APA (ms) Ratio (%)

tree fact total tree fact total tree fact total
antlr 1.057 0.070 1.128 293.041 2,169.711 2,462.752 0.36 0.00 0.05
luindex 0.304 0.017 0.321 88.838 1,714.354 1,803.192 0.34 0.00 0.02
avrora 0.104 0.007 0.111 11.480 315.673 327.153 0.91 0.00 0.03
jython 2.929 0.161 3.089 3,789.976 18,433.352 22,223.328 0.08 0.00 0.01
fop 0.169 0.026 0.195 16.204 34.756 50.960 1.04 0.07 0.38
lusearch 0.365 0.021 0.386 129.647 362.232 491.880 0.28 0.01 0.08
pmd 1.754 0.131 1.885 3,730.134 1,564.484 5,294.618 0.05 0.01 0.04
xalan 0.070 0.004 0.074 3.136 1,281.976 1,285.112 2.24 0.00 0.01
chart 0.300 0.016 0.317 161.927 3,861.086 4,023.013 0.19 0.00 0.01
hsqldb 0.076 0.001 0.078 0.911 1,441.709 1,442.620 8.38 0.00 0.01
bloat 0.349 0.025 0.373 224.864 120.896 345.759 0.16 0.02 0.11
eclipse 0.180 0.013 0.193 60.170 150.701 210.871 0.30 0.01 0.09
sunflow 0.233 0.018 0.252 74.617 507.074 581.690 0.31 0.00 0.04
Total 7.891 0.510 8.402 8,584.943 31,958.004 40,542.948 0.09 0.00 0.02
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(a) time for updating tree (b) time for updating facts

Fig. 9. Reaching definitions for the program luindex: analysis time of incremental APA where 𝑥-axis is the
size of program change (0–20%) and 𝑦-axis is the reduced time (percentage w.r.t. baseline APA time).

(a) updated tree nodes (b) updated facts

Fig. 10. Reaching definitions for the program luindex: updated nodes in path expression and facts by
incremental APA, where 𝑥-axis is the size of program change (0–20%) and 𝑦-axis is the updated tree nodes
and program facts (percentage w.r.t. baseline APA).

small, the updated tree nodes and facts are also small, and they are the reasons why our method for
incremental APA can have a significant reduction in analysis time. The results of this experiment,
shown in Fig. 10, confirm our hypothesis. When the size of program change increases from 2% to
20%, the percentage of updated nodes in the path expression increases from 0.02% to 0.16%, and the
percentage of updated program facts increases from 1.25% to 18%.
The reason why we keep the program changes below 20% is because the goal is to conduct

APA incrementally in response to small and frequent changes. Above 20%, the changes are no
longer small. That said, out of curiosity, we have conducted experiments with the program changes
increased to 100%. At 100%, the curves in Fig. 9 would go slightly above 100%, indicating that
incremental APA is slower than baseline APA because removing all nodes from the existing APA-
tree and then rebuilding the tree from scratch) take time. The curves in Fig. 10 reach exactly 100%,
indicating that all nodes and facts are recomputed.

8 Related Work
As mentioned earlier, our method is the first method for conducting APA incrementally in response
to program changes. While there is a large body of work on APA in the literature, to the best of
our knowledge, none of the existing methods leverages the intermediate results computed for a
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previous version of the program to speed up APA for the current program. For example, while we
experimentally compared with two existing methods (in addition to baseline APA), these existing
methods were not designed to solve the same problem targeted by our method.

In particular, the method of Conrado et al. [6] was designed to quickly answer a large number of
queries on a fixed version of the program, by amortizing the computational cost only during the
first step of APA (which is computing the path expression); they did not mention nor implement the
second step (which is interpreting the path expression). Since we reused their tool for experimental
comparison, we had to implement the second step for their method, to facilitate a fair comparison
with our method and other APA methods.

While we are not aware of any existing work on incremental APA, there is a large body of
work on classic (non-incremental) APA. These classic techniques can be traced all the way back
to Tarjan’s fast algorithm for computing path expression [28] and his unified framework [29] for
solving path problems. Reps et al. [21] were the first to compute path expression in polynomial
time, essentially by leveraging Tarjan’s algorithm. For more information about classic and recent
techniques on APA, please refer to the tutorial paper by Kincaid et al. [14].

Improving the efficiency of APA is only one of the related research directions. Another research
direction is improving the quality of path expression computed from the control flow graph. Recall
that path expression guarantees to capture all feasible program paths of interest, but in order to
be efficient, it may also capture some infeasible program paths. Generally speaking, the fewer
infeasible program paths, the better, since infeasible program paths lead to less accurate analysis
result. Cyphert et al. [8] developed a technique for refining a given path expression to improve its
quality: by reducing the number of infeasible program paths captured by the path expression, they
were able to improve the accuracy of APA.

Besides classic data-flow analyses, APA has been used in a wide range of applications including
but not limited to invariant generation [13], termination analysis [37], invariant generation [12],
predicate abstraction [22], and more recently, the analysis of probabilistic programs [30, 31]. Among
these applications, a particularly interesting line of work is to exploit the inherent compositionality
of APA [9, 10]. Being compositional means that the result of analyzing a program can be com-
puted from results of analyzing the individual components in isolation. This is important because
compositionality allows APA to scale to large programs and to be easily parallelized.
Beyond APA, the problem of incrementally updating analysis results has been studied in the

context of iterative program analysis, e.g., by Ryder [23], Pollock and Soffa [19], and Arzt and
Bodden [3]. The declarative program analysis framework [16, 34] that has become popular in recent
years [18, 24, 25, 32, 33] can also be viewed as a form of iterative program analysis, for which the
fixed-point computation is performed either by BDDs [17] or a Datalog solver [2]. Incremental
algorithms have been proposed for these declarative program analysis techniques [26, 27, 35].

9 Conclusion
We have presented a method for incrementally conducting algebraic program analysis in response
to changes of the program under analysis. Compared to the baseline APA, our method consists of
two new components. The first component is designed to represent the path expression as a tree and
to efficiently update the tree in response to program changes. The second component is designed to
efficiently update program facts of interest in response to changes of the path expression. Overall,
the goal is to reduce the analysis time by leveraging intermediate results that are already computed
for the program before changes are made. Our experimental evaluation on 13 real-world Java
applications from the DaCapo benchmark suite shows that our method is hundreds to thousands
of times faster than the baseline APA and two other existing methods.
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