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Abstract—Due to the open-source nature of the blockchain
ecosystem, it is common for new blockchains to fork or partially
reuse the code of classic blockchains. For example, the popular
Dogecoin, Litecoin, Binance BSC, and Polygon are all variants
of Bitcoin/Ethereum. These “forked” blockchains thus could
encounter similar vulnerabilities that are propagated from Bit-
coin/Ethereum during forking or subsequently commit fetching.
In this paper, we conduct a systematic study of detecting and
investigating the propagated vulnerabilities in forked blockchain
projects. To facilitate this study, we propose BlockScope, a novel
tool that can effectively and efficiently detect multiple types of
cloned vulnerabilities given an input of existing Bitcoin/Ethereum
security patches. Specifically, BlockScope adopts similarity-based
code match and designs a new way of calculating code similarity
to cover all the syntax-wide variant (i.e., Type-1, Type-2, and
Type-3) clones. Moreover, BlockScope automatically extracts and
leverages the contexts of patch code to narrow down the search
scope and locate only potentially relevant code for comparison.

Our evaluation shows that BlockScope achieves good precision
and high recall both at 91.8% (1.8 times higher recall than
that in the state-of-the-art ReDeBug while with close precision).
BlockScope allows us to discover 101 previously unknown vul-
nerabilities in 13 out of the 16 forked projects of Bitcoin and
Ethereum, including 16 from Dogecoin, 6 from Litecoin, 1 from
Binance BSC, and 4 from Optimism. We have reported all the
vulnerabilities to their developers; 40 of them have been patched
or accepted, 66 were acknowledged or under pending, and only
4 were rejected. We further investigate the propagation and
patching processes of discovered vulnerabilities, and reveal three
types of vulnerability propagation from source to forked projects,
as well as the long delay (mostly over 200 days) for releasing
patches in Bitcoin forks (vs. ∼100 days for Ethereum forks).

I. INTRODUCTION

Blockchain [67] and DeFi (Decentralized Finance) [79]
are emerging in recent years. A good development in the
blockchain ecosystem is that many projects are open-source.
This is particularly true for the public blockchains like Bitcoin
and Ethereum. As a result, new blockchains could fork or
partially reuse the code of classic blockchains to speed up
the development. Notably, Bitcoin is the one with most forked
projects — the popular Dogecoin, Litecoin, Dash, Zcash, and
Bitcoin Cash/SV are all variants of Bitcoin. In recent years,
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Ethereum was also forked by a number of EVM (Ethereum
Virtual Machine)-compatible chains, such as Binance Smart
Chain (BSC), Polygon, Avalanche Contract Chain, and Opti-
mism (Ethereum’s Layer-2 rollup network).

However, “forked” blockchains could encounter similar
vulnerabilities that appeared in the code of Bitcoin and
Ethereum. Specifically, a vulnerability could be propagated
from Bitcoin/Ethereum to the forked projects during the initial
fork or subsequently when updated commits are fetched from
Bitcoin/Ethereum. In this paper, we aim to systematically
detect cloned vulnerabilities in forked blockchain projects and
investigate how they are propagated and patched.

To facilitate this study and future analysis, we propose
BlockScope, a novel tool that can not only automatically detect
vulnerable clones but also pinpoint the cases already fixed and
their patching process information. To achieve effective and
efficient detection on all the syntax-wide cloned vulnerabilities
(i.e., Type-1, Type-2, and Type-3 clones, as to be defined in
Sec. II-C), BlockScope has two unique designs as compared to
typical code clone detection tools, e.g., [43], [47], [50], [57],
[68], [82]. First, we adopt similarity-based code match, instead
of the hash-based exact match in ReDeBug [43], VUDDY [50],
and MVP [82], so that BlockScope is more tolerant to the
code lines with no exact “abstracted” hashes. Moreover, we
design a new way of calculating code similarity to better
handle the code fragments with inserted/deleted/reordered code
lines. According to our evaluation with the state-of-the-art
ReDeBug tool, our new design greatly reduces false negatives
while only slightly increasing false positives for our problem.
Second, BlockScope automatically extracts and leverages patch
code contexts to locate only potentially relevant code for
comparison. This not only dramatically improves the running
performance for large projects, e.g., 15.4 times faster than
ReDeBug in analyzing Ethereum’s forked projects with more
lines of code (LOC), but also enhances the detection precision
because the context similarity is also being considered.

To evaluate BlockScope, we collect a dataset of 38 security
patches — 32 of them are directly from Bitcoin’s reposi-
tory because there were only four CVEs in the recent five
years, and the rest six are CVEs of Ethereum reported in
the last three years. With this input, we apply BlockScope
and ReDebug to test 11 most popular forked projects of
Bitcoin and 5 of Ethereum (identified from nearly the top 100
cryptocurrencies), with 4.2M C/C++ LOC and 3.5M Go LOC,
respectively. The evaluation shows that BlockScope detects
101 true vulnerabilities in all the 13 forked projects (three
projects, Qtum, Avalanche, and Polygon, does not contain
any of the tested vulnerabilities), whereas ReDeBug detects
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only 57 vulnerabilities in 11 forked projects. By performing a
thorough code review of all the raw detection results, we find
that BlockScope achieves good precision and high recall both
at 91.8%, whereas ReDeBug’s recall is only 51.8% despite its
precision at 95%. Among the 101 vulnerabilities automatically
detected by BlockScope, we are able to identify serious ones
from the top blockchains like Dogecoin, Litecoin, Bitcoin SV,
Binance BSC, and Optimism. This demonstrates the real-world
impact of our work1.

We further investigate how the discovered vulnerabilities2

are propagated from Bitcoin/Ethereum to their forked projects
and understand the patching processes of the 138 cases that
were already fixed in forked projects before our detection.
Specifically, we reveal three types of vulnerability propagation
from Bitcoin/Ethereum to their forked projects, including the
cases directly forked in the beginning, fetched from vulnerable
commits, and infected with no explicitly vulnerable commits.
Besides vulnerability propagation, we additionally identify
three other propagation that caused false positives and neg-
atives in BlockScope; details in Sec. V-B. As for patch delays,
we find that only DigiByte, among the six forked projects
of Bitcoin with enough patched cases, can catch up with
Bitcoin’s patch release schedule. The patch delays for the other
five are typically long, mostly over 200 days. Compared with
Bitcoin, the result for Ethereum’s forked projects is relatively
acceptable, with half of the patches released within 100 days.

Contributions. To sum up, we make the following major
contributions in this paper:

• (Methodology) We propose novel patch-based clone de-
tection for vulnerable code clones in forked projects, in
which we design (i) a context-based search with similarity
measurement to efficiently locate candidate code clones
and (ii) a new way of calculating the similarity between
two code fragments that is immune to Type-1/2/3 clones.

• (Detection) We apply this methodology to detect 101
previously unknown vulnerabilities in the forked projects
of Bitcoin and Ethereum with high precision and recall.

• (Investigation) We further conduct a deep investigation of
the vulnerability propagation and patching processes of
the discovered vulnerabilities, and reveal new findings.

Ethics. As an ethical research and one contribution of
this paper, we have spent significant efforts reporting all the
110 vulnerabilities (including nine false negatives manually
identified during the evaluation). The details are available
in Sec. IV-D and this GitHub repository, https://github.com/
VPRLab/BlkVulnReport.

Roadmap. The rest of this paper is organized as follows.
After explaining different blockchain projects and code clone
types in Sec. II, we first propose the BlockScope tool in
Sec. III to effectively detect the propagated vulnerabilities
in the forked blockchains. We then evaluate the accuracy
and performance of BlockScope and leverage it to discover
previously unknown vulnerabilities in Sec. IV. We further
analyze how the discovered vulnerabilities are propagated from
Bitcoin and Ethereum to the forked projects and understand

1Binance acknowledged our vulnerability report with a bug bounty reward.
2Besides 101 automatically detected cases, we also analyzed 9 that were

false negatives in BlockScope but manually identified during the evaluation.
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Fig. 1: Representative hard forks of Bitcoin.

TABLE I: The basic information of Bitcoin, Ethereum, and
their popular forked projects.

(a) Bitcoin and its forked projects (as of 7 September 2021).

# Name Code Market Cap Repository Star
1 Bitcoin BTC $749.70B bitcoin/bitcoin 60.3K
6 Dogecoin DOGE $42.55B dogecoin/dogecoin 13.6K
11 Bitcoin Cash BCH $12.02B Bitcoin-ABC/bitcoin-abc 1.1K
12 Litecoin LTC $11.88B litecoin-project/litecoin 4K
33 Bitcoin SV BSV $3.24B bitcoin-sv/bitcoin-sv 520
55 Dash DASH $1.79B dashpay/dash 1.4K
59 Zcash ZEC $1.64B zcash/zcash 4.5K
75 Bitcoin Gold BTG $1.04B BTCGPU/BTCGPU 611
79 Horizen ZEN $935.27M HorizenOfficial/zen 202
80 Qtum QTUM $923.88M qtumproject/qtum 1.1K
83 DigiByte DGB $868.91M digibyte/digibyte 361
100 Ravencoin RVN $693.34M RavenProject/Ravencoin 932

(b) Ethereum and its forked projects (as of 6 June 2022).

# Name Code Market Cap Repository Star
2 Ethereum ETH $229.87B ethereum/go-ethereum 37.7K
5 Binance BNB $50.69B bnb-chain/bsc 1.6K

14 Avalanche AVAX $7.65B ava-labs/subnet-evm 1.6K
17 Polygon MATIC $5.15B maticnetwork/bor 400
78 Celo CELO $604.02M celo-org/celo-blockchain 382
199 Optimism OP $263.36M ethereum-optimism/optimism 1.2K

their patching processes in Sec. V. We then discuss some
insights and implications in Sec. VI. Lastly, Sec. VII reviews
the related work and Sec. VIII concludes the paper.

II. BACKGROUND

In this section, we first introduce the background of Bit-
coin, Ethereum, and their popular forked projects in Sec. II-A
and Sec. II-B, and then provide the definition of different code
clone types in Sec. II-C.

A. Bitcoin and its Forked Projects

Bitcoin (BTC) [61] is the first cryptocurrency that in-
troduced the blockchain technology to the world. Bitcoin
leverages blockchain as a distributed ledger to guarantee
the consensus between different peers. Currently, Bitcoin is,
without doubt, the dominant cryptocurrency, whose market
capitalization takes around 40% of the whole market. Since
Bitcoin is open-sourced, it has nourished many blockchain
projects. Specifically, among the top 100 cryptocurrencies on
CoinMarketCap [15] as of 7 September 2021, we identified
that 11 projects directly fork or partially reuse the code of
Bitcoin. We list them in Table Ia and refer to them as Bitcoin’s
forked projects in this paper.

Most forked projects forked only the Bitcoin code, whereas
Bitcoin Cash (BCH), Bitcoin SV (BSV), and Bitcoin Gold
(BTG) also forked Bitcoin’s blockchain, i.e., copying its trans-
action history, as the basis for their own blockchain [41]. They
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are known as the “hard forks” of Bitcoin, as each of them
creates a permanent fork of the original Bitcoin’s blockchain.
We present the relationship between Bitcoin and these three
projects in Fig. 1. As we can see, Bitcoin Cash is the earliest
fork, which aims to reduce the transaction fee and improve
the transaction speed of the original Bitcoin. Therefore, they
extend the maximum block size to 32MB, while the original
Bitcoin’s block size limit is 1MB. Bitcoin SV further extends
this limit to 128MB, which leads to another hard fork. Bitcoin
Gold, on the other hand, claims to solve the original Bitcoin’s
monopolized mining problem. Specifically, they hope that by
enabling mining on commonly available GPUs instead of
specialized ASICs, it can democratize and decentralize the
mining.

Litecoin gets its name from “the light version of Bitcoin”.
Its goal is to provide faster transactions than Bitcoin. No-
tably, instead of using Bitcoin’s SHA-256, Litecoin adopts
Scrypt [23] as the hash function, which offers a less compute-
intensive but more memory-intensive mining process [33].
Dogecoin also leverages Scrypt as the hash function. Indeed, it
copies both Bitcoin’s and Litecoin’s code. Although Dogecoin
reached a market capitalization of over 40 billion USD, it was
initially created as a meme cryptocurrency with an unlimited
total supply [16]. DigiByte is another fork of Litecoin’s code.
Besides SHA-256 and Scrypt, it can work with three more
mining algorithms [25].

Dash is not only a cryptocurrency but also a decentralized
autonomous organization run by a subset of its users called
“masternodes”. Specifically, anyone with 1,000 Dash can be-
come a masternode in the Dash network and share the block
reward. Besides the standard node functions, the masternodes
can vote on proposals to improve the ecosystem and provide
two additional kinds of transactions, i.e., “InstantSend” and
“PrivateSend” for instant transactions and private transactions,
respectively [19].

Zcash and Horizen are designed to enhance the privacy
for their users. As the original Bitcoin is pseudo-anonymous, it
is possible to decipher the patterns and connections involved,
which may expose all information related to the sender and
the receiver [62]. To tackle this problem, Zcash applies Zero-
Knowledge proof algorithms (called zk-SNARKs) to “shield”
the transactions so that it will not disclose the information
about the coin holders. Similarly, Horizen (formerly known
as ZenCash) is a derivative of Zcash. On top of the zk-
SNARKs system, Horizen adopts a different funding model,
which shares the block reward among miners, developers, and
secure/super node operators, while Zcash just rewards miners
and developers [62].

Qtum is a hybrid blockchain that combines the charac-
teristics of Bitcoin and Ethereum. It introduces an Account
Abstraction Layer to integrate Bitcoin’s Unspent Transaction
Output model with the Ethereum Virtual Machine for smart
contracts to operate [74]. Besides, Qtum adopts Proof-of-
Stake (PoS) consensus mechanism instead of Bitcoin’s Proof-
of-Work (PoW) to simplify the mining process since PoW
is resource-intensive, i.e., it wastes enormous amounts of
electricity on mining coins [37].

Ravencoin is unique in terms of that it was designed for
users to tokenize assets on-chain and transfer ownership via

blockchain transactions [34]. Such assets can be physical or
digital, including gold, in-game items, copyrights, etc [71].

B. Ethereum and its Forked Projects

Ethereum [80] is the first blockchain system with the
capability of constructing Turing-complete smart contracts,
which contain a set of pre-defined rules and regulations for
self-execution. Ether (ETH) is the native cryptocurrency for
maintaining the operations on Ethereum, which is the second
largest cryptocurrency with a market capitalization of around
230 billion USD as of June 2022. As an open-sourced project,
Ethereum also nourished many blockchain projects. Specif-
ically, we analyzed all the projects listed on Blockscan [10]
and selected five of the most popular projects that directly fork
or partially reuse the code of Ethereum. Table Ib presents the
basic information of these forked projects as of 6 June 2022.

Binance is the largest cryptocurrency exchange in the
world. As of 27 July 2022, its 24-hour trading volume reaches
11.7 billion USD [13]. Originally, Binance developed Binance
Chain to provide a marketplace for trading cryptocurrency in
a decentralized manner, with BNB being the native token.
However, as Binance Chain is not EVM-compatible, users
cannot develop decentralized applications (DApps) using smart
contracts [11]. Binance initiated Binance Smart Chain (BSC)
with EVM compatibility to solve this problem. On February
15, 2022, Binance Chain and Binance Smart Chain united
into BNB Chain [18]. Currently, BNB Chain holds around 3.4
million transactions daily, with 2.0 million active wallets [14].

Avalanche aims to solve Ethereum’s issues regarding trans-
action fee, scalability, and programmability, by leveraging a
multi-chain approach [40]. Specifically, Avalanche combines
three separate blockchain networks, i.e., X-Chain: for issuing
digital assets, C-Chain: for converting Ethereum’s DApps to
Avalanche, and P-Chain: for validating the states of subnets.
Celo is also EVM-compatible. Notably, it provides a client
designed for mobile phone users. Moreover, while the trans-
action fee is paid with the native asset (ETH) on Ethereum,
Celo allows users to pay transaction fees with the native asset
(CELO) and stable coins (cUSD and cEUR) [35].

Polygon and Optimism are Ethereum’s layer-2 networks,
which also target on Ethereum’s scalability and transaction
fee issues. Layer-2 solutions refer to infrastructures or simple
protocols built on top of the Ethereum main chain [21],
i.e., layer-1. Typically, they handle off-chain transactions and
send only compact data to layer-1. Polygon is technically a
sidechain of Ethereum, as it uses its own consensus algorithms
and runs in parallel with the main chain. However, different
from sidechains, Optimism uses Optimistic Rollups [20] to
interact with the main chain and use smart contracts that reside
within Ethereum [24].

C. Definition of Code Clone Types

Due to the nature of open-source projects, it is common
for projects to reuse parts of code from others. However,
vulnerabilities are always reintroduced due to the casual code
reuses, namely code clones. While code clone detections
are widely studied among the famous open-source projects,
e.g., Linux Kernel, detections for cloned vulnerabilities in
the forked blockchain projects are much less explored. In
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};

// Protected by cs_main
static ThresholdConditionCache warningcache[VERSIONBITS_NUM_BITS];

static int64_t nTimeCheck = 0;
static int64_t nTimeForks = 0;
static int64_t nTimeVerify = 0;
static int64_t nTimeConnect = 0;
static int64_t nTimeIndex = 0;
static int64_t nTimeCallbacks = 0;
static int64_t nTimeTotal = 0;

bool ConnectBlock(const CBlock& block, CValidationState& state, CBlockIndex* pindex,
                  CCoinsViewCache& view, const CChainParams& chainparams, bool fJustCheck)
{
    AssertLockHeld(cs_main);

    const Consensus::Params& consensus = Params().GetConsensus(pindex->nHeight);
    int64_t nTimeStart = GetTimeMicros();

    // Check it again in case a previous version let a bad block in
    if (!CheckBlock(block, state, !fJustCheck, !fJustCheck))
        return error("%s: Consensus::CheckBlock: %s", __func__, FormatStateMessage(state));

    // verify that the view's current state corresponds to the previous block
    uint256 hashPrevBlock = pindex->pprev == NULL ? uint256() : pindex->pprev->GetBlockHash();
    assert(hashPrevBlock == view.GetBestBlock());

    // Special case for the genesis block, skipping connection of its transactions
    // (its coinbase is unspendable)
    if (block.GetHash() == Params().GetConsensus(0).hashGenesisBlock) {
        if (!fJustCheck)
            view.SetBestBlock(pindex->GetBlockHash());
        return true;
    }

    bool fScriptChecks = true;
    if (!hashAssumeValid.IsNull()) {
        // We've been configured with the hash of a block which has been externally verified to h
        // A suitable default value is included with the software and updated from time to time. 
        //  relative to a piece of software is an objective fact these defaults can be easily rev
        // This setting doesn't force the selection of any particular chain but makes validating 
        //  effectively caching the result of part of the verification.
        BlockMap::const_iterator  it = mapBlockIndex.find(hashAssumeValid);
        if (it != mapBlockIndex.end()) {
            if (it->second->GetAncestor(pindex->nHeight) == pindex &&
                pindexBestHeader->GetAncestor(pindex->nHeight) == pindex &&
                pindexBestHeader->nChainWork >= UintToArith256(consensus.nMinimumChainWork)) {
                // This block is a member of the assumed verified chain and an ancestor of the be
                // The equivalent time check discourages hashpower from extorting the network via
                //  into accepting an invalid block through telling users they must manually set 
                //  Requiring a software change or burying the invalid block, regardless of the s
                //  it hard to hide the implication of the demand.  This also avoids having relea
                //  that are hardly doing any signature verification at all in testing without ha
                //  artificially set the default assumed verified block further back.

0e7c52d

1775 1775
1776 1776
1777 1777
1778 1778
1779 1779
1780 1780
1781 1781
1782 1782
1783 1783
1784 1784
1785 1785
1786 1786
1787 1787
1788 1788
1789 1789
1790 1790
1791 1791
1792 1792
1793 1793
1794

1794
1795
1796
1797
1798
1799
1800

1795 1801
1802

1796 1803
1797 1804
1798 1805

1799 1806
1800 1807
1801 1808
1802 1809
1803 1810
1804 1811
1805 1812
1806 1813
1807 1814
1808 1815
1809 1816
1810 1817
1811 1818
1812 1819
1813 1820
1814 1821
1815 1822
1816 1823
1817 1824
1818 1825

     assert(pindex);
     // pindex->phashBlock can be null if called by CreateNewBlock/TestBlockValidity
     assert((pindex->phashBlock == nullptr) ||
            (*pindex->phashBlock == block.GetHash()));
     int64_t nTimeStart = GetTimeMicros();
 
     // Check it again in case a previous version let a bad block in
     // NOTE: We don't currently (re-)invoke ContextualCheckBlock() or
     // ContextualCheckBlockHeader() here. This means that if we add a new
     // consensus rule that is enforced in one of those two functions, then we
     // may have let in a block that violates the rule prior to updating the
     // software, and we would NOT be enforcing the rule here. Fully solving
     // upgrade from one software version to the next after a consensus rule
     // change is potentially tricky and issue-specific (see RewindBlockIndex()
     // for one general approach that was used for BIP 141 deployment).
     // Also, currently the rule against blocks more than 2 hours in the future

     // is enforced in ContextualCheckBlockHeader(); we wouldn't want to
     // re-enforce that rule here (at least until we make it impossible for
     // GetAdjustedTime() to go backward).
-     if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck))
+     if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck))
+         if (state.CorruptionPossible()) {
+             // We don't write down blocks to disk if they may have been
+             // corrupted, so this should be impossible unless we're having hardware
+             // problems.
+             return AbortNode(state, "Corrupt block found indicating potential hardware f
+         }
         return error("%s: Consensus::CheckBlock: %s", __func__, FormatStateMessage(state
+     }
  
     // verify that the view's current state corresponds to the previous block
     uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : pindex->pprev->GetBlo
     assert(hashPrevBlock == view.GetBestBlock());
 
     // Special case for the genesis block, skipping connection of its transactions
     // (its coinbase is unspendable)
     if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {
         if (!fJustCheck)
             view.SetBestBlock(pindex->GetBlockHash());
         return true;
     }
 
     nBlocksTotal++;
 
     bool fScriptChecks = true;
     if (!hashAssumeValid.IsNull()) {
         // We've been configured with the hash of a block which has been externally veri
         // A suitable default value is included with the software and updated from time 
         //  relative to a piece of software is an objective fact these defaults can be e
         // This setting doesn't force the selection of any particular chain but makes va
         //  effectively caching the result of part of the verification.
         BlockMap::const_iterator  it = mapBlockIndex.find(hashAssumeValid);
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Fig. 2: The overall workflow of BlockScope and our study.

this study, it is essential to analyze the cloned code among
the forked blockchain projects. Therefore, we adopt the type
definitions of code clones from [59] as follows:

• Type-1 clones refer to two identical code fragments with
variations in whitespaces, layouts, and comments.

• Type-2 clones include Type-1 clones and extend the
variations to identifiers, literals, and types, e.g., variable
renaming.

• Type-3 clones further extend these variations to syntac-
tically similar code with inserted, deleted, or updated
statements.

• Type-4 clones refer to semantically equivalent code frag-
ments but syntactically different, which is out of the scope
of this paper.

In this paper, we focus on the detection of Type-1, Type-2,
and Type-3 code clones. Detecting Type-4 code clones requires
code semantic learning or understanding, which is out of the
scope of typical clone detection tools including BlockScope.

III. BLOCKSCOPE

A. Design Choices and System Overview

To detect the propagated vulnerabilities from the existing
security patches of Bitcoin/Ethereum, we design BlockScope
as a patch-based code clone detection tool. This makes
BlockScope, by nature, more similar to security-oriented clone
detection tools (e.g., ReDeBug [43], VUDDY [50], MVP [82],
and VGraph [29]) rather than the traditional clone detection
tools (e.g., CCFinder [47], CPMiner [57], DECKARD [44],
and SourcererCC [68]) that do not differentiate vulnerable
and patched code inputs. Moreover, since we aim to test all
different blockchain projects, we design BlockScope to be
language-agnostic as similar to ReDeBug. As a result, we do
not perform “program analysis-alike” preprocessing, such as
variable/type/function abstraction in VUDDY, program slicing
in MVP, and code property graph [83] in VGraph, before the
similarity measurement between source and target code.

Besides the choices above, BlockScope offers two unique
designs that are also the major novelty of our methodology:

• Leveraging patch code contexts to search and locate only
potentially relevant code. Since our detection targets are
the propagated vulnerabilities in the forked projects, it is
reasonable to assume that they have similar contexts as the
original patch code in the source repositories. BlockScope
thus leverages the extracted patch code contexts to search
for potentially relevant code in the target repositories

and employs code similarity to finalize the contexts of
candidate code clones. This not only helps BlockScope
avoid the whole-repository analysis as in typical code
clone detection tools but also improves the precision
because the context similarity is also being considered.

• Adopting similarity-based code match for being more tol-
erant to variant code clones. To cover all the syntax-wide
Type-1, Type-2, and Type-3 clones, we adopt similarity-
based code match, instead of the hash-based exact code
match in ReDeBug [43], VUDDY [50], and MVP [82].
This allows BlockScope to be more tolerant to the code
lines with no exact “abstracted” hashes (i.e., Type-2
clones). Moreover, we design a new way of calculating
code similarity to better handle the code fragments with
inserted/deleted/reordered code lines (i.e., Type-3 clones).

Fig. 2 presents the overall workflow of BlockScope in five
major steps. Firstly, Sec. III-B describes how the Extractor
component or Extractor3 extracts the code contexts from
patches in the source repositories. Secondly, in Sec. III-C,
Searcher leverages the extracted patch contexts to search
for candidate contexts in the target repositories. Thirdly,
Fetcher in Sec. III-D retrieves the patch and candidate
code hunks in the source and target repositories, respec-
tively. Fourthly, Comparator in Sec. III-E employs a new
similarity-based code matching technique to determine the
propagated vulnerabilities from Fetcher’s outputs. Lastly,
for the vulnerabilities already patched, Calculator in Sec.
III-F measures their patch delays in the target repositories.

B. Extracting Patch Contexts from the Source Repositories

Given a security patch from the source project or code
repository (e.g., Bitcoin/Ethereum), BlockScope first extracts
its code context. In this paper, we provide an Extractor
component to automatically extract the contexts of patch code
and use its output for system evaluation. In reality, BlockScope
also supports the manually crafted code contexts from security
experts for better accuracy. To distinguish the context of patch
code from that of target code, we call the former “patch
context” and the latter “candidate context”, as shown in Fig. 2.

Unlike ReDeBug that directly takes the entire part of the
nearby code lines (after normalization and tokenization) as
context, Extractor recognizes important variable and func-
tion names as the context keywords and uses these keywords
to search for candidate contexts in the target repositories (as

3We describe different BlockScope components using their names, e.g.,
Extractor, hereafter.
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1 AssertLockHeld(cs_main);

2 assert(pindex);

3 assert((pindex->phashBlock == nullptr) ||

4 (*pindex->phashBlock == block.GetHash()));

5 int64_t nTimeStart = GetTimeMicros();

6 - if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck))

7 + if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck)) {

8 + if (state.CorruptionPossible()) {

9 + return AbortNode(state, “Corrupt block found ...");

10 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

11 uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

12 assert(hashPrevBlock == view.GetBestBlock());

13 if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

14 if (!fJustCheck)

1 bool ConnectBlock(const CBlock& block, CValidationState& state, ...,

2 CCoinsViewCache& view, const CChainParams& chainparams, bool fJustCheck)

3 AssertLockHeld(cs_main);

4 const Consensus::Params& consensus = Params().GetConsensus(pindex->nHeight);

5 int64_t nTimeStart = GetTimeMicros();

6 if (!CheckBlock(block, state, !fJustCheck, !fJustCheck))

7 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

8 uint256 hashPrevBlock = pindex->pprev == NULL ? uint256() : ...;

9 assert(hashPrevBlock == view.GetBestBlock());

10 if (block.GetHash() == Params().GetConsensus(0).hashGenesisBlock) {

11 if (!fJustCheck)

Source patch code hunk from Bitcoin Target candidate code hunk from DogecoinUP context

DOWN context

start statement (ss)

start statement (ss)

end statement (es) & key statement (ks)

end statement (es)

key statement (ks)

Leverage git grep to find ks in target repo

Determine the boundary ss and es by similarity

Fig. 3: Illustrating BlockScope’s context-based search process for finding candidate contexts in a target repository.

in Sec. III-C). As a result, we do not require each extracted
keyword to be precise because as long as one of the context
keywords can find the correct candidate context, context sim-
ilarity measurement (in Sec. III-C) will automatically exclude
the search results of other incorrect context keywords.

We use the left patch code of Fig. 3 to illustrate the
process of extracting context keywords. After normalizing
and tokenizing each patch code line, Extractor uses the
following heuristics to automatically recognize at most one
context keyword per code line. Specifically, we consider the
tokens with both lower and upper case letters (including some
special characters like “.”) and select the longest one as the
most important variable or function name of one code line.
In this way, BlockScope automatically selects nine context
keywords, as highlighted in red color, from the patch code
context in Fig. 3. As mentioned above, we do not require
each extracted keyword to be precise, and according to our
evaluation in Sec. IV, this simple strategy of automatically
extracting context keywords works well for our problem.

C. Searching for Candidate Contexts in the Target Reposito-
ries

The Searcher component of BlockScope then uses the
extracted context keywords to search for candidate contexts in
the target repositories. The basic idea is to first search for the
key statements in target code (via patch context keywords),
then recover the corresponding boundary of each potential
code context, and finally determine the candidate contexts via
the similarity measurement with the original patch context. To
illustrate this context-based search process, we use Bitcoin’s
patch of checking corrupted blocks and its vulnerable clone in
Dogecoin as a running example. As shown in Fig. 3, the left-
hand side is the patch code hunk (commit 0e7c52dc) from
Bitcoin, while the right-hand side shows the cloned version in
Dogecoin 4. It also illustrates the following three steps.

1) Searching for the key statements. The first step is to
find the key statements (ks) that are the code statements in the

4Note that we only keep the “meaningful” code statements, i.e., empty lines,
comments, and single brackets are removed.

target code with the searched context keywords. Specifically,
Searcher first leverages git grep to search for all the
code statements that contain the patch context keyword(s)
in the target repositories, and then finalize the search result
by measuring the similarity between the searched ks with
the original ks. If the measured similarity is higher than
the threshold configured in BlockScope, we consider it one
potential candidate ks. To minimize the misses and avoid
causing false negatives to the subsequent steps, this step uses
a relatively low threshold (0.25) based on the Normalized
Levenshtein [53] metric, i.e., strsim() used in equation (1).
This is acceptable because among all the searched candidate
kss, we select the one with the highest similarity as the
final candidate ks. Specifically, given a patch context pc =
{(k1, s1), (k2, s2), ..., (km, sm)}, where (ki, si) represents the
extracted keyword ki of the code statement si, the search result
sri for ki is represented as sri = (ki, [s

′
i1, s

′
i2, ..., s

′
in]), where

s′ij is the code statement that contains ki in the target reposi-
tory. We determine s′pq as the final candidate ks according to
the equation (1). In the case of Fig. 3, Searcher selects line
5 and 9 (both with the highest similarity) of Dogecoin as the
final candidate kss of the UP and DOWN contexts, respectively.

p, q = argmax
1≤i≤m,1≤j≤n

strsim(si, s
′
ij) (1)

Moreover, in the course of implementing the candidate
context search, we adopt three automatic optimizations to
further improve BlockScope’s context search precision and
avoid unnecessary analysis in the subsequent steps. First,
it excludes the search result with comments and test code.
Second, it excludes the search result with the file type different
from the patch’s file type, e.g., the patch in Fig. 3 is a
C/C++ source code file, based on which BlockScope excludes
C/C++ header files and non-C/C++ source code files in the
search result. Third, BlockScope excludes the search result
with different statement types. For example, since line 5 in
Fig. 3 is an assignment statement, any search result does not
match the same statement type will be automatically discarded.

2) Determining the boundary of candidate contexts.
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Once identified the candidate ks, the next step of Searcher
is to retrieve the code statements surrounding it and determine
their boundary. Specifically, we need to expand the one-line
candidate ks into the multi-line candidate context that has the
corresponding boundary as the original patch context. To do
so, we first fetch the same number of nearby code statements
from target code as that, represented as C_LINES, in the
patch context. For example, in Fig. 3, if we set C_LINES=5,
Searcher fetches line 1 to 5 and line 7 to 11 for the
candidate UP and DOWN contexts in Dogecoin, respectively.
Then starting from the ks (i.e., line 5 and 9 of Dogecoin),
Searcher compares each code statement upwards and down-
wards with the start statement (ss) and end statement (es) in
the patch context, respectively. It then selects the ones with
the highest similarity and also exceeding the aforementioned
threshold (0.25) as the boundary ss and es in the candidate
context, e.g., line 3 and line 5 for Dogecoin’s UP context.

3) Finalizing the candidate contexts via similarity mea-
surement. It is worth noting that ss and es only define the
boundary of the candidate context, while the code statements in
between remain unchecked. As illustrated in the step 3 of Fig.
3, we thus further check whether the entire candidate context is
indeed similar to the patch context via the same multi-line code
similarity measurement that will be introduced in Sec. III-E. If
the measured similarity between the candidate context C and
the patch context P exceeds a threshold, we consider C as the
context of a candidate clone for further processing; otherwise,
we discard this candidate context. Note that since multiple
candidate contexts’ similarity could exceed the threshold, all
of these candidate contexts will be further processed.

D. Fetching Patch and Candidate Code Hunks from the Source
and Target Repositories

With the determined candidate context(s), we leverage
Fetcher to retrieve the patch code from the source repository
and the candidate code from the target repository, respectively.
Note that Fetcher is also used by the earlier Searcher
component to retrieve the context of a patch/candidate code
hunk. Specifically, a typical code hunk consists of three code
fragments, the UP context, the DOWN context, and the middle
patch/candidate code, as previously shown in Fig. 3.

For the patch code hunk, Fetcher directly fetches its
patch code from the commit history and selects the nearby
code statements upwards and downwards (with the line num-
ber specified by C_LINES) as the UP and DOWN contexts,
respectively. For the candidate code hunk, we fetch its code
statements according to the candidate context determined in
Sec. III-C and also the original patch context. Specifically,
if the original patch contains both UP and DOWN contexts,
we regard the code statements between the corresponding
candidate contexts as the candidate code. As a result, line 6
of Dogecoin is fetched as the candidate code in Fig. 3. If
the patch context contains only the UP context, we regard the
code statements below it as the candidate code. Similarly, if
the patch context contains only the DOWN context, we regard
the code statements above it as the candidate code. Note that
for the last two situations, the candidate code is fetched with
the same number of code statements as the patch code.

E. Measuring the Similarity between Patch and Candidate
Code

With the fetched patch and candidate code, Comparator
measures the similarity between their two code fragments
and also determine whether the target repository has fixed
the vulnerability, if the candidate code is not vulnerable. As
mentioned in Sec. III-A, we need a new way of calculating
the code similarity that is immune to Type-1/2/3 clones.

We first abstract the code similarity problem in this form:
given a source code fragment S with p code statements and a
target code fragment T with q code statements, respectively,
we need to design an appropriate measure to determine their
similarity. Intuitively, we can compute the similarity between
S and T by first adding up the similarity of each pair of
code statements at the same position in S and T and then
normalizing it into [0, 1], i.e., 1

p

∑p
i=1 strsim(Si, Ti). While

this can handle Type-2 clones because of not using the hash-
based exact match per code line, it is still not applicable to
measuring Type-3 clones for two reasons. First, as Type-3
clones involve inserted/deleted statements, i.e., p ̸= q, the extra
code statements will not be measured in this way. Second,
because of the inserted/deleted statements, the ordering of the
same code statement in S and T might be also different.

To solve the problems above, we determine two principles:
(i) all the code statements in S and T should be considered; and
(ii) the influence of the ordering issue should be adjustable. For
the first principle, we identify the most similar code statement
in T for every code statement in S, i.e., for each code statement
Si ∈ S, we find Tj ∈ T , s.t., j = argmaxk strsim(Si, Tk).
For the second principle, we first define the index i and j as the
relative positions of the code statements in S and T if Si’s most
similar statement is Tj . The basic idea is that the greater the
difference between i and j is, the less similarity between Si and
Tj should be. Therefore, we introduce a parameter r ∈ [0, 1],
and r|i−j| to indicate the reward of the similarity between Si

and Tj . By multiplying this reward by the original similarity,
we can adjust the ordering issue’s influence on code similarity.
To illustrate the impact of r on the similarity measurement, we
calculate the similarities of all the patch and candidate code
pairs under different r. We present the result in Appendix A. In
this paper, we set 0.95 as the default value of r. Once finishing
the calculation of such similarity for every code statement in S,
we sum them up and normalize the result into [0, 1], as shown
in the following equation (2).

SIMILARITY(S, T ) =
1

p

p∑
i=1

strsim(Si, Tj)r
|i−j|

s.t., j = argmax
1≤k≤q

strsim(Si, Tk)
(2)

While the method above provides a new way of measuring
the similarity between two code fragments, we still need to
determine whether the target repository has applied a patch
or not. Specifically, given the candidate code C of the target
repository, we compare it with the patch code P. Note that
there are three types of P: (i) DEL-type: contains only the
deleted lines, i.e., P = [dp]; (ii) ADD-type: contains only the
added lines, i.e., P = [ap]; and (iii) CHA-type: contains both
deleted and added lines, i.e., P = [dp, ap]. We thus determine
the comparison logic as follows (where t is the threshold):

6



TABLE II: An example of the output of git blame.
src/qt/bitcoin.cpp
202d853b 201 }
202d853b 202 }
202d853b 203
a2714a5c 204 static int qt_argc = 1;
797fef7b 205 static const char* qt_argv = "qtum-qt";
a2714a5c 206
a2714a5c 207 BitcoinApplication::BitcoinApplication(...):
a2714a5c 208 QApplication(qt_argc, const_cast<char **>(...)),
9096276e 209 coreThread(nullptr),
71e0d908 210 m_node(node),
9096276e 211 optionsModel(nullptr),

• For type (i), if SIMILARITY(C, dp) ≥ t, we determine
that C did not apply P; otherwise, we determine that C
has applied P.

• For type (ii), if SIMILARITY(C, ap) ≥ t, we determine
that C has applied P; otherwise, we determine that C did
not apply P.

• For type (iii), if SIMILARITY(C, dp) ≥ t and
SIMILARITY(C, ap) ≥ t and SIMILARITY(C, dp) ≥
SIMILARITY(C, ap), we determine that C did not ap-
ply P; otherwise, if SIMILARITY(C, dp) ≥ t and
SIMILARITY(C, ap) ≥ t and SIMILARITY(C, dp) <
SIMILARITY(C, ap), we determine that C has applied
P.

Moreover, as Searcher may return multiple candidate
contexts in the target repository, leading to multiple candidate
code, i.e., Ci ∈ [C1, C2, ..., Cn]. For each Ci, we calculate
si = SIMILARITY(Ci, P ), and determine its patch applying
status fvi ∈ {0, 1}, where fvi = 1 (= 0) indicates Ci has
(not) applied P. Here we introduce a factor confi to measure
the confidence of fvi on Ci by confi = si− t, i.e., the greater
si exceeds t the more confident fvi is on Ci. Finally, we can
determine the status of P in the target repository by the most
confident fvi, i.e., i = argmaxj confj . If the target repository
did not apply P, we consider it a vulnerability; otherwise, we
consider the vulnerability fixed.

F. Determining Patch Delays for the Vulnerabilities Already
Patched in the Target Repositories

For the vulnerabilities already patched in the target repos-
itories, we further leverage Calculator to automatically
measure their patch delays. We define the patch delay as
the interval between the patch’s commit date in the source
project and the patch’s release date in the target project because
eventually, the release date is the actual time when a patch is
available to the blockchain node operators and end users.

Upon receiving a candidate code that is determined as
fixed, Calculator leverages git blame to retrieve the
commit that patched the code. Table II illustrate an exam-
ple output of git blame, where the left column shows
the commit hash (SHA), the column in the middle shows
the line number for the code statements on the right in
Qtum’s src/qt/bitcoin.cpp file. The code from line
204 to line 208 is actually Qtum’s patch for fixing the
cloned CVE-2021-3401 [12] in its project. It was added
by two commits, a2714a5c69 and 797fef7bee, where
797fef7bee only modified line 205. Hence, we still need
to determine which commit is the true fix. In the Qtum
example, after checking both commits, we identify that line
205 in Table II was originally added by a2714a5c69 on

10 August 2019 as static const char* qt_argv =
"bitcoin-qt";, where "bitcoin-qt" is later replaced
by "qtum-qt" in 797fef7bee on 26 June 2020. As a
result, if multiple commits modify the candidate code, we
consider the earliest one is the true fix commit.

Moreover, we need to scrape the release information from
GitHub because the local git repository does not contain
such information. By analyzing a commit’s GitHub webpage,
Calculator can retrieve all of its release versions and de-
termine the earliest date when the commit was first released. In
the Qtum example, the patch commit a2714a5c69 was first
released in the version mainnet-ignition-v0.19.0 on
22 February 2020, which was delayed from the original Bitcoin
commit by 197 days.

IV. DETECTING THE VULNERABILITIES PROPAGATED TO
FORKED PROJECTS

In this section, we aim to detect the vulnerabilities that
are propagated from Bitcoin and Ethereum to their forked
blockchain projects using BlockScope. To this end, we first
benchmark the accuracy and performance of BlockScope (Sec.
IV-B) using an experimental setup introduced in Sec. IV-A. We
then present the detected vulnerabilities in Sec. IV-C. Finally,
we conduct ethical vulnerability reporting and summarize
vendors’ response/actions in Sec. IV-D.

A. Experimental Setup

To make sure that BlockScope’s vulnerability detection
results are reliable, we not only run BlockScope in our
experiment but also compare it with the open-source state-of-
the-art ReDeBug [43] using the same dataset and environment
below. Note that we also considered other clone detection tools
(e.g., [47], [50], [68], [82]) for more comparison but eventually
did not choose them for two reasons. First, MVP [82] was not
open-source and it does not support the Go language. While
VUDDY [50] released its signature generating scripts, its
most important vulnerability search engine was not available.
Indeed, we contacted the VUDDY team and confirmed that
their cloud version currently supports only one CVE in our
dataset. Second, CCFinder [47] and SourcererCC [68] are pure
code clone detection tools and are not able to perform patch-
based detection in our problem without adjustment.

Dataset. As illustrated in Fig. 2, BlockScope requires two
sets of input, the target blockchain code repositories and the
security patches of a reference blockchain (i.e., Bitcoin and
Ethereum in this paper). As a result, we collect these two
sets of data as our dataset. Specifically, for code repositories,
we select all the 11 forked projects of Bitcoin from the top
100 cryptocurrencies (based on the market capitalization on
CoinMarketCap) and five popular forked projects of Ethereum
(picked from Blockscan) as our target blockchains, as previ-
ously introduced in Sec. II. The total market capitalization
of these 16 blockchains was around 142 billion USD. To
build a reproducible dataset, we kept a local copy of the
latest version of code repositories at the time of our research
on 7 September 2021 and 6 June 2022 for Bitcoin forks
and Ethereum forks, respectively. On the other hand, for
security patches, an intuitive idea is to use the CVE (Common
Vulnerabilities and Exposures) information; however, we found
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TABLE III: The experimental result of BlockScope.

(a) The accuracy and performance comparison between BlockScope and ReDeBug.

Forked Project LOC BlockScope ReDeBug
TP FN TN FP Time TP FN TN FP Time

Dogecoin 326.9K 16 - 15 1 7.6s 7 9 15 1 12.5s
Bitcoin Cash 607.1K 1 - 30 1 10.5s - 1 31 - 22.2s

Litecoin 423.3K 6 - 26 - 8.3s 5 1 26 - 16.4s
Bitcoin SV 221.1K 11 1 18 2 10.6s 2 10 19 1 9.9s

Dash 380.3K 9 1 22 - 13.9s 7 3 21 1 17.7s
Zcash 199.4K 9 2 19 2 8.4s 1 10 21 - 10.7s

Bitcoin Gold 381.7K 10 1 21 - 8.8s 10 1 21 - 17.4s
Horizen 178.9K 9 2 20 1 7.7s 1 10 21 - 12.6s
Qtum 569.0K - - 31 1 12.0s - - 32 - 33.5s

DigiByte 416.3K 10 1 21 - 10.7s 10 1 21 - 15.8s
Ravencoin 504.2K 14 1 16 1 11.4s 10 5 17 - 20.9s

Sum 4.2M 95 9 239 9 109.9s 53 51 245 3 189.6s
(382.6K)* (3.4s)⋄ (5.9s)⋄

Binance 565.3K 1 - 5 - 2.2s - 1 5 - 30.2s
Avalanche 1070.1K - - 6 - 2.5s - - 6 - 55.2s
Polygon 592.0K - - 6 - 2.3s - - 6 - 31.3s

Celo 631.0K 1 - 5 - 2.7s 1 - 5 - 44.5s
Optimism 630.6K 4 - 2 - 3.6s 3 1 2 - 43.3s

Sum 3.5M 6 - 24 - 13.3s 4 2 24 - 204.5s
(697.8K)* (2.2s)⋄ (34.1s)⋄

*: the numbers in (.) of these cells represent the average LOC per project.
⋄: the numbers in (.) of these cells represent the average processing time per patch.

(b) The fixed cases detected by BlockScope.

Forked Project # Fixed Cases
Detected Truth Err*

Dogecoin 1 1 -
Bitcoin Cash 23 25 (2;-)

Litecoin 22 22 -
Bitcoin SV 1 1 -

Dash 11 10 (-;1)
Zcash 2 1 (-;1)

Bitcoin Gold 14 14 -
Horizen 1 - (-;1)
Qtum 28 28 (1;1)

DigiByte 14 14 -
Ravencoin 3 3 -

Sum 120 119 (3;4)

Binance 5 5 -
Avalanche 3 3 -
Polygon 6 6 -

Celo 4 4 -
Optimism 1 1 -

Sum 19 19 -

* represents (the number of missed
cases; the number of mistake cases).

that there are only 12 CVEs about Bitcoin with explicit patch
code and eight of them are out of the recent five years. That
said, we could select only four to test if we just use the public
CVE information.

To address this problem, we select bug issues/pull requests
with notable security impacts (i.e., vulnerabilities) and their
patch commits (i.e., patches) directly from Bitcoin’s GitHub
repository according to three simple principles: (i) the patches
should be released within the recent five years since outdated
patches had been applied to Bitcoin before it gets forked;
(ii) the patches that cover different vulnerability types should
have a higher chance to be picked up so that we can evaluate
the generality of BlockScope; and (iii) the patches should be
applicable to most forked projects, i.e., not specific to one
particular Bitcoin component or one fork. As a result, we
are able to select 32 patches of Bitcoin from June 2017 to
March 2020, including four CVEs. For Ethereum, since its
forks are relatively new, we select six CVEs of Ethereum
since November 2020 as the patches. These 38 patches involve
multiple vulnerability types, including denial-of-service, race
conditions, privacy leakage, and etc. While the number of
Bitcoin and Ethereum vulnerabilities here is not large, we have
to be selective to make sure they are actually vulnerabilities.
Indeed, Bitcoin and Ethereum have a limited number of vul-
nerabilities over the years. For example, the VUDDY dataset
included only 9 CVEs of Bitcoin, with 8 of them already before
2013 and only one after 2018. Moreover, we have 16 popular
forked projects of Bitcoin and Ethereum forked projects to test,
which multiplied the total test cases to 382 (32× 11+ 6× 5).

Environment and tool configuration. We evaluate
BlockScope and ReDeBug on the same virtual machine run-
ning Ubuntu 18.04 with 4GB memory configured, while the
host machine is a Macbook Pro with a 3.5GHz dual-core Intel
Core i7 CPU and 16GB memory. Note that ReDeBug needs
to set a n-gram parameter to adjust the number of lines for
context code. While the default is four, we tried from one to
ten and found that when n-gram=3, ReDeBug achieves its

best result when analyzing our dataset.

B. Accuracy and Performance

After running BlockScope and ReDeBug on the dataset in
Sec. IV-A (i.e., using 32 Bitcoin patches and six Ethereum
patches to test the 16 forked projects) and performing a
thorough code review of all the raw detection results (including
the cases that have no any output), we are able to precisely
obtain the accuracy and performance data for both tools.
Overall, BlockScope detects 101 true vulnerabilities in 13
forked projects (Qtum, Avalanche, and Polygon do not contain
any vulnerability in our dataset as we manually checked),
whereas ReDeBug detects only 57 vulnerabilities in ten forked
projects, which makes BlockScope’s recall 1.8 times higher
than that in ReDeBug. For performance, BlockScope is also
1.7 times faster than ReDeBug in analyzing Bitcoin’s forked
projects and even 15.4 times faster in analyzing Ethereum’s
forked projects with more code per project.

Table IIIa shows a breakdown of the detailed accuracy and
performance results of BlockScope and ReDeBug, where TP,
FN, TN, and FP represent true positive, false negative, true
negative, and false positive, respectively. According to this
table, we can calculate the precision via TP/(TP + FP )
and the recall via TP/(TP + FN), respectively. We find
that BlockScope achieves good precision and high recall both
at 91.8%. In contrast, while ReDeBug has only three false
positives in our dataset (mainly because it uses the exact
match per code line), its recall is as low as 51.8%. That said,
ReDeBug fails to detect many of the vulnerabilities covered by
BlockScope. Since we aim to perform a thorough investigation
of forked blockchains’ vulnerabilities, BlockScope achieves
the high recall we need while introducing a low false alarming
rate at only 8.18%. Moreover, among the 13 forked projects
with vulnerabilities (i.e., no Qtum, Avalanche, and Polygon),
BlockScope detects vulnerabilities in all of them, while ReDe-
Bug fully misses the results for two projects, Bitcoin Cash and
Binance. In particular, BlockScope successfully detects all the
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TABLE IV: # of different vulnerability types in each project.

Forked Project Type-1 Type-2 Type-3 Sum
T B;R T B;R T B;R T B;R

Dogecoin 6 (6;4) - - 10 (10;3) 16 (16;7)
Bitcoin Cash 1 (1;-) - - - - 1 (1;-)

Litecoin 5 (5;5) - - 1 (1;-) 6 (6;5)
Bitcoin SV 1 (1;-) - - 11 (10;2) 12 (11;2)

Dash 7 (7;7) - - 3 (2;-) 10 (9;7)
Zcash 1 (1;-) 2 (1;-) 8 (7;1) 11 (9;1)

Bitcoin Gold 9 (9;8) - - 2 (1;2) 11 (10;10)
Horizen - - 2 (2;-) 9 (7;1) 11 (9;1)
Qtum - - - - - - - -

DigiByte 7 (7;7) 1 (1;-) 3 (2;3) 11 (10;10)
Ravencoin 7 (7;7) - - 8 (7;3) 15 (14;10)

Sum 44 (44;38) 5 (4;-) 55 (47;15) 104 (95;53)
Binance - - - - 1 (1;-) 1 (1;-)

Avalanche - - - - - - - -
Polygon - - - - - - - -

Celo 1 (1;1) - - - - 1 (1;1)
Optimism 4 (4;3) - - - - 4 (4;3)

Sum 5 (5;4) - - 1 (1;-) 6 (6;4)

T, B, and R represent: the total number of vulnerabilities of each
clone type, the number of vulnerabilities detected by BlockScope,
and the number of vulnerabilities detected by ReDeBug, respectively.

vulnerabilities in Dogecoin, Bitcoin Cash, Litecoin, Binance,
Celo, and Optimism with zero false negative.

We further explore the reasons that cause BlockScope to
have a much better detection effectiveness than ReDeBug by
analyzing the detailed results of detecting different clone types.
This is because while ReDeBug claims that it can handle
Type-1 and Type-3 clones, the accuracy of each clone type
may vary. As shown in Table IV, among the 110 (TP + FN)
vulnerabilities in the forked projects of our dataset, 95.5%
of them are the Type-1 and Type-3 clones, with the number
of Type-3 clones slightly higher than that of Type-1 clones.
For these cases, ReDeBug achieves an accuracy of 85.7% for
Type-1 clones, but its detection rate for Type-2 and Type-3
clones drops to 0% and 26.8%, respectively. This explains
why ReDeBug performs better on six particular projects — the
number of Type-1 clones in those six projects (i.e., Litecoin,
Dash, Bitcoin Gold, DigiByte, Celo, and Optimism) is larger
than that of Type-3 clones. Indeed, if a forked project has
more Type-1 clones, it is more similar to the original project.
In contrast, BlockScope does not have this limitation. It is able
to detect all the Type-1 clones, and misses only one and eight
cases for the more complicated Type-2 and Type-3 clones,
respectively. This indicates that BlockScope still reaches a high
rate of 80% for Type-2 clones and 85.7% for Type-3 clones.

For performance, BlockScope performs much faster on
all the projects than ReDeBug. In particular, BlockScope can
finish the analysis of 10 forked projects within ten seconds,
while ReDeBug just finishes only one project (i.e., Bitcoin SV)
within ten seconds. We further analyze whether the project’s
LOC affects the performance of BlockScope and ReDeBug.
For BlockScope, we notice that it takes almost the same time
(10.5s vs. 10.6s) to analyze Bitcoin Cash and Bitcoin SV,
even though the LOC of Bitcoin Cash is 2.7 times that of
Bitcoin SV (607K vs. 221.1K). In contrast, the processing
time of ReDeBug for the same two projects is 22.2s and 9.9s,
respectively. The difference of 2.2 times is close to the ratio of
those two projects’ LOC. This indicates that the project’s LOC
does not explicitly affect the processing time of BlockScope,
while it has a significant effect on ReDeBug’s performance.

Indeed, when we compare the performance of BlockScope
between Bitcoin forks (with fewer LOC) and Ethereum forks
(with more LOC), we notice that BlockScope can finish the
analysis of Ethereum forks even faster. It suggests that for
BlockScope, the number of target patches (32 for Bitcoin
vs. 6 for BlockScope) has a more noticeable impact on its
performance than LOC. ReDeBug, on the other hand, is the
opposite, with LOC having much more impact than the number
of target patches on its performance. For example, for Qtum
and Binance that have almost the same LOC, the analysis
time of ReDeBug is also almost the same (33.5s vs. 30.2s).
As we mentioned earlier, typical code clone detection tools
like ReDeBug perform a whole-project analysis – so LOC
dominates the performance, while BlockScope leverages patch
code contexts to search and locate only potentially relevant
code for comparison – so LOC has a much limited effect.

C. Analysis of the Detected Vulnerabilities

Since BlockScope detects not only the cloned vulnera-
bilities but also whether a patch is applied, we perform an
analysis on both the detected vulnerabilities and the fixed cases
in this subsection. For a deep investigation on the individual
vulnerability, we present it later in Sec. V.

As shown in Table IIIa, Bitcoin’s forked projects have
a total of 104 vulnerabilities. Among the 11 projects, only
Bitcoin Cash and Qtum have few vulnerabilities, while eight
projects have at least 10 vulnerabilities each out of the 32
patches investigated. In particular, Dogecoin and Ravencoin
did not patch around half of the total 32 vulnerabilities. On
the contrary, Ethereum’s forks present a better result, with
only Optimism having four vulnerabilities out of the six
patches investigated. The other four projects have at most one
vulnerability each, with Avalanche and Polygon fully patched.

For the result of fixed cases, the forked projects of Bitcoin
and Ethereum have fixed a total of 138 vulnerabilities (119
for Bitcoin and 19 for Ethereum). While Bitcoin’s 11 forked
projects have fixed 119 vulnerabilities, five of them, Dogecoin,
Bitcoin SV, Zcash, Horizen, and Ravencoin, fixed only six
vulnerabilities in total. Three projects, Qtum, Bitcoin Cash, and
Litecoin, contribute to 63% of all the fixed cases. Similar to the
result above regarding the vulnerable cases, Ethereum’s forked
projects also perform better in the fixed cases. While Optimism
fixed only one vulnerability, the other four projects have
fixed at least half of the investigated patches. Indeed, when
comparing the ratio of the fixed/vulnerable cases between
Bitcoin’s and Ethereum’s forked projects — 119/104 vs. 19/6,
we notice that Ethereum’s forks are more active in fixing
propagated vulnerabilities. Another aspect for measuring the
project’s activeness on patching vulnerabilities is the patch
delay, which we provide a detailed analysis in Sec. V-C.

D. Vulnerability Reporting and Response

As an ethical research and one contribution of this paper,
we have spent significant efforts reporting all the 110 discov-
ered vulnerabilities (including 101 TP automatically detected
by BlockScope and 9 FN manually identified by us during
evaluation) to the developers of the affected forked projects
via multiple channels. In Table V, we summarize the latest
developers’ response and actions to our vulnerability reports
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TABLE V: Developers’ response to our vulnerability reports.

Forked Project Fixed Accepted ACK Pending Reject Sum
Dogecoin 11 3 2 - - 16

Bitcoin Cash - - - 1 - 1
Litecoin 2 - 3 1 - 6

Bitcoin SV - - 8 2 2 12
Dash 1 5 3 1 - 10
Zcash - - 9 1 1 11

Bitcoin Gold 7 - 1 3 - 11
Horizen - - 4 7 - 11
Qtum - - - - - -

DigiByte - - - 11 - 11
Ravencoin 9 1 3 1 1 15

Sum 30 9 33 28 4 104
Binance - 1 - - - 1

Avalanche - - - - - -
Polygon - - - - - -

Celo - - 1 - - 1
Optimism - - - 4 - 4

Sum - 1 1 4 - 6

as of 26 July 2022. Specifically, “Fixed” means that the vendor
has adopted our reports to fix the issues, “Accepted” represents
that the developers accepted our reports and were exploring
appropriate patch migration, “ACK” suggests that the vendor
has acknowledged our reports but did not explicitly indicate to
fix the issues, “Pending” means that we have not received any
response yet, and lastly, “Reject” means that the vendor has
denied and refused to fix the vulnerabilities. We can see that
around 74 of our 110 vulnerability reports received positive
response, which demonstrates that the impact of our work. We
further classify developers’ response into three categories:

Positive/Active Response. Among the 13 forked projects
with vulnerabilities, around half of them responded to our
vulnerability report positively, namely Dogecoin, Ravencoin,
Dash, Bitcoin Gold, Litecoin, and Binance. Specifically, Do-
gecoin acknowledged all of our reports and quickly fixed
11 serious vulnerabilities, while the others are scheduled or
under the community discussion for appropriate patch migra-
tion. Meanwhile, Ravencoin accepted nearly all the reports.
The developers fixed nine of them and acknowledged three
except one rejection and one pending due to the compatibility
consideration. Similarly, the developers of Dash approved
nearly all the reports and informed us that they had fixed five
vulnerabilities under the development branch, which will be
merged into a new release in the future. Bitcoin Gold also
fixed seven vulnerabilities in one release after around four
months receiving our reports, with another one acknowledged
and three under pending, while Litecoin fixed two of the
vulnerabilities and claimed that they had noticed the other
three. Lastly, Binance immediately acknowledged our report on
BSC and rewarded us a bug bounty with the promise of fixing
it. During this reporting process, we found that developers are
more likely to fix a vulnerability with authoritative proofs, es-
pecially those with CVE numbers. For instance, the Dogecoin
developers quickly released a new version of the Dogecoin
core after they fixed CVE-2021-3401 and CVE-2019-15947.
However, for the other vulnerabilities with no CVE assigned,
they just acknowledged them and kept them on the to-do list.

Neutral Response. In this category, developers also ac-
cepted our reports but did not have intention to fix any of them
yet. Specifically, Bitcoin SV’s developers quickly acknowl-
edged 8 of the 12 reports, and Zcash similarly acknowledged 9
of the 11 reports. However, both rejected a few (2 for Bitcoin
SV and 1 for Zcash) due to incompatibility, and we have

Bitcoin Forked VulnerabilityPatchGeneral Missed Flaw

(a) The fork type: vulnerabilities directly forked in the
beginning.

(b) The fetch type: vulnerabilities fetched from vulnerable
commits.

(c) The mixed type: vulnerabilities infected with no explicitly
vulnerable commits.

Fig. 4: Three types of the vulnerability propagation from
Bitcoin to its forked projects.

not received further updates from them. Meanwhile, Horizen
acknowledged four vulnerability reports with the other seven
still under pending, and Celo acknowledged the only report.

Negative/Inactive Response. Unfortunately, the response
from the rest of three projects is not active and worrisome.
Specifically, Bitcoin Cash, DigiByte, and Optimism did not
give response to any of our reports. The worst case is DigiByte
because it ignored 11 vulnerabilities, including some critical
ones like CVE-2021-3401 and CVE-2019-15947.

V. INVESTIGATING THE PROPAGATION AND PATCHING
PROCESSES OF DISCOVERED VULNERABILITIES

In this section, we conduct a deep investigation of the
vulnerabilities discovered in Sec. IV. Specifically, in Sec.
V-A, we aim to understand how these vulnerabilities are
propagated from Bitcoin and Ethereum to their forked projects.
Furthermore, in Sec. V-B, we diagnose some other propagation
that caused our detection to fail (both FP and FN). Lastly,
we perform a patch delay analysis in Sec. V-C to understand
the patching processes of the cases that were already fixed in
forked projects before our detection.

A. Revealing the Vulnerability Propagation from
Bitcoin/Ethereum to Their Forked Projects

To reveal how a vulnerability is propagated from Bitcoin
and Ethereum to the forked projects, we manually check all
the 110 vulnerabilities, including 104 from Bitcoin forks and
6 from Ethereum forks, respectively, and categorize them into
three types, as shown in Fig. 4. To simplify the description
in this section, we apply “Bitcoin” to represent both Bitcoin
and Ethereum, unless explicitly specified. The first type, as
illustrated in Fig. 4a, refers to the vulnerabilities that were
introduced when the project was initially forked from Bitcoin.
For better understanding and simplicity, we call it the fork
type. The second type, as depicted in Fig. 4b, is similar to the
first type except that it fetched and merged vulnerable commits
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of Bitcoin afterwards. We call it the fetch type. The third
type, as shown in Fig. 4c, is an advanced version of the fetch
type. The major difference is that vulnerabilities of this type
were infected with no explicitly vulnerable commits of Bitcoin.
Typically, they are caused by the defective program design
or inappropriate functionality implementation that involves
multiple code commits. We call this type the mixed type.
In total, we identify 41 fork-type, 25 fetch-type, and
44 mixed-type vulnerabilities, respectively. We conduct case
studies about these three types as follows.

Vulnerabilities directly forked in the beginning. In the
fork type, vulnerabilities were propagated into the forked
projects when they forked from Bitcoin. Many vulnerabil-
ities, such as CVE-2022-29177 and CVE-2021-41173 from
Ethereum, or CVE-2021-3401 from Bitcoin, are the classic
cloned vulnerability cases to explore fork-type vulnerabilities
and study their propagations. Take CVE-2021-3401 as an
example. This vulnerability first appeared in Bitcoin, but we
found that it also affected three other forked projects (Dash,
Ravencoin, and Bitcoin Gold) since they were initially forked
from Bitcoin. As detailed in [32] and the patch code in [12], it
was caused by the misuse of the Qt-framework built-in argu-
ments. Specifically, Bitcoin and its forked projects leverage
the Qt-framework [22] to design their own GUI programs.
However, Qt suffered from argument misinterpretation, in
which attackers can inject dangerous built-in Qt arguments,
e.g., -platformpluginpath, into a normal Qt command
to load and execute their malicious plugin code remotely.

Vulnerabilities fetched from vulnerable commits. In
the fetch type, vulnerabilities were introduced when forked
projects fetch commits from Bitcoin to update their function-
alities without verifying whether a commit is vulnerable or
neglecting a patch from Bitcoin afterwards. Dogecoin and
DigiByte (forked from Bitcoin) were also affected by the
aforementioned CVE-2021-3401 yet in this way, and Op-
timism (forked from Ethereum) were similarly affected by
the CVEs including CVE-2020-26265, CVE-2020-26264, and
CVE-2020-26260. Taking Dogecoin as example, it fetched
the vulnerable commit 202d853b [2] of CVE-2021-3401
from Bitcoin that sets inappropriate arguments in the class
BitcoinApplication, but failed to pose any security
check, causing a typical fetch vulnerability. This is different
from the fork vulnerabilities because Dogecoin fetched the
vulnerable code actively instead of passively including it.
Unfortunately, there are no specification for the developers of
forked projects to use the upstream code so that it is easy to
skip the security patches and fetch a vulnerable commit only.

Vulnerabilities infected with no explicitly vulnerable
commits. Different from the fork and fetch vulnerabil-
ities, it is hard to locate the specific vulnerable commits
that introduced vulnerabilities in the mixed type. It usually
contains a few consecutive or discrete commits instead of
the specific one(s). Only when all the buggy commits were
included together, a vulnerability would then appear. Typically,
in the mixed type, the program would still run correctly at
the code level, but attackers can exploit the logical flaws. For
instance, Bitcoin PR#16512 [9] fixed a logical flaw where the
joinpsbts function did not shuffle its inputs and outputs,
causing a privacy leak that attackers could easily identify
which outputs belong to which inputs. This vulnerability

Bitcoin Forked VulnerabilityPatchGeneral Missed

(a) FP-I: no clone, and thus no vulnerability.

A B

A

(b) FP-II: patch outdated.

B CA

AA

(c) FN: target code outdated.

Fig. 5: Three types of propagation from Bitcoin to its forked
projects that caused BlockScope to fail in terms of FP and FN.

was originated from the defect of the joinpsbts function
implementation, instead of a certain commit that made the
function vulnerable.

B. Diagnosing Some Other Propagation that Caused Our
Detection to Fail

During our investigation of vulnerability propagation,
we also identified some other propagation that evaded
BlockScope’s detection (FN) or caused false positives (FP).
We carefully analyze all the 18 failed detection cases (9 FPs
and 9 FNs) that are listed in Table VI, and summarize them
into three types, FP-I, FP-II, and FN, as shown in Fig. 5.

FP-I: no clone, and thus no vulnerability. As shown
in Fig. 5a, the forked project sometimes keeps its outdated
code and does not clone the vulnerable commit. As a result,
it has no need to fetch the patch commit either. However, for
certain vulnerabilities, there may have multiple ways to write a
security patch — some fix the root cause while others close the
attack surface. Since BlockScope detects the vulnerable clone
based on the similarity measurement with one specific patch,
it is possible that it gives false alarming if the vulnerable code
could be avoided in other ways.

One notable example is CVE-2018-17145 [4], which
caused BlockScope to generate four same false positives, as
shown in Table VI. We conducted a deep analysis of this DoS
vulnerability. We found that the root cause is a susceptible
variable m_callbacks_pending, which was introduced in
Bitcoin at the commit 08096bbb [3] (but forked projects like
Dogecoin did not fetch this vulnerable commit). The size of
this variable would grow unlimitedly and run out of all the host
memory if attackers create flooding transactions to execute an
interface function called Inventory(inv.hash). Unfor-
tunately, Bitcoin patched this vulnerability only by deleting
the unrestricted Inventory function. Since Dogecoin did
not clone both vulnerable and patch commits, BlockScope
identifies the unrestricted Inventory function and thus
determines that the forked vulnerable is also vulnerable. While
the interface function is still there, there was no victim

11



TABLE VI: All the 18 failed detection in BlockScope.

SHA Source Project Cause FP/FN
beef7ec4 CVE-2018-17145 Bitcoin SV No Clone FP-I
beef7ec4 CVE-2018-17145 Dogecoin No Clone FP-I
beef7ec4 CVE-2018-17145 Horizen No Clone FP-I
beef7ec4 CVE-2018-17145 Zcash No Clone FP-I
d8318318 CVE-2019-15947 Bitcoin SV No Clone FP-I
0e7c52dc Bitcoin PR#12561 Zcash No Clone FP-I
b8f80196 Bitcoin PR#14249 Ravencoin No Clone FP-I
0e7c52dc Bitcoin PR#12561 Qtum Outdated Patch FP-II
18f690ec Bitcoin PR#13808 Bitcoin Cash Outdated Patch FP-II
76f74811 Bitcoin PR#10345 Bitcoin SV Outdated Target FN
37886d5e Bitcoin PR#11568 Horizen Outdated Target FN
37886d5e Bitcoin PR#11568 Zcash Outdated Target FN
e254ff5d Bitcoin PR#13907 Zcash Outdated Target FN
4433ed0f Bitcoin PR#15305 Horizen Outdated Target FN
effe81f7 Bitcoin PR#15323 Dash Outdated Target FN
effe81f7 Bitcoin PR#15323 Ravencoin Outdated Target FN

e6c58d3b Bitcoin PR#15325 Bitcoin Gold Outdated Target FN
e6c58d3b Bitcoin PR#15325 DigiByte Outdated Target FN

m_callbacks_pending variable in Dogecoin, making at-
tackers cannot exploit the Inventory function. There are a
total of seven false positives like this, as shown in Table VI.

FP-II: patch outdated. An outdated patch means that the
forked projects had fetched a patch commit but neglected its
further update. As shown in Fig. 5b, suppose there was a
vulnerability in both Bitcoin and its forked project. Bitcoin
released two different version of the patch at the point A and
B, respectively. The first patch is for instant fixing while the
latter for the patch update. However, the forked project just
accepted the first patch. When BlockScope applied the final
patch (i.e., the second) to detect clones, it cannot not match
the target code and trigger a false positive.

For example, BlockScope generated a false positive for
Bitcoin PR#13808 when testing Bitcoin Cash. Bitcoin fixed
this vulnerability by using the shuffle [5] function of
the C++ standard library, which is the first patch. However,
Bitcoin later substituted the patch with the Shuffle [6]
function created in Bitcoin PR#14624. It is an updated patch
to fix the issue in a more appropriate way. Since Bitcoin
Cash adopted the first patch only and neglected the update,
it caused a FP of BlockScope. More specifically, it means
that Bitcoin Cash still uses the shuffle function of the C++
standard library. When BlockScope used the updated patch for
detection, it failed because BlockScope cannot match the patch
from PR#14624. Similarly, BlockScope failed in another FP-II
type vulnerability in Qtum from Bitcoin PR#12561.

FN: target code outdated. BlockScope could also en-
counter false negatives when the target code where the patch
applies to is outdated. In the example of Fig. 5c, point A
indicates an underlying vulnerability in a Bitcoin function.
This vulnerability is further inherited along with the devel-
opment of Bitcoin at point B, and Bitcoin creates a patch at
point C to fix the vulnerability located at point B. A forked
project suffers from the same vulnerability because it includes
a copy of the vulnerable commit at point A. However, the
Bitcoin patch at point C can not be directly applied to the
vulnerability at point A due to the inconsistent code, causing
a FN. Specifically, BlockScope uses the patch code at point
C to search the potentially vulnerable code segments in a
forked project. If BlockScope cannot identify any related code
segments, it reports nothing and poses a false negative.

Taking Bitcoin PR#15305 as an example, it specifies the
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Fig. 6: CDF plots of # the delay days per security patch.

behavior of Bitcoin nodes to disconnect a block correctly
when the Bitcoin program hits exceptions. However, when
BlockScope applied the patch code of PR#15305 [8] to detect
clones in Bitcoin SV, nothing outputted and a false negative
appeared. This is because that Bitcoin SV keeps the outdated
code cloned from Bitcoin. Indeed, we checked the history of
the outdated code in Bitcoin SV and found that it was a copy of
an old version of Bitcoin code. This outdated code in Bitcoin
SV makes the Bitcoin patch cannot be directly applied. In
total, BlockScope made nine such false negatives due to the
outdated target code, as shown in Table VI.

C. Patch Delay Analysis

As previously mentioned in Sec. IV-C, we identified a total
of 138 cases (119 from Bitcoin forks and 19 from Ethereum
forks) that were already fixed before our detection. Among
the 11 forked projects of Bitcoin, five projects have only a
few fixed cases — Dogecoin, Bitcoin SV, and Zcash have one
fixed case each, and Horizen even has no fixed case. Therefore,
there is no enough data to analyze their patch delay. Moreover,
since we only investigated six patches for Ethereum’s forked
projects, i.e., they do not have many fixed cases, we put
them together as “Ethereum Forks”. Hence, we focus on the
“Ethereum Forks” and six Bitcoin’s forked projects with more
than ten fixed cases each, i.e., Bitcoin Cash, Litecoin, Dash,
Bitcoin Gold, Qtum, and DigiByte. For each forked project,
we draw a CDF plot of its patch delay days, as shown in Fig. 6.
We also plot the CDF for Bitcoin’s and Ethereum’s patch delay
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days, i.e., the intervals between the commit date and the release
date of the patch commit in the original projects, using the
black line as a reference.

According to the black line in Fig. 6a, Bitcoin released
all the selected patches within 300 days, and 80% of its
patches were released within 200 days. The patch delay for
serious vulnerabilities is even quicker, e.g., within 110 days
for the four investigated CVEs. Unfortunately, only DigiByte
can catch up with Bitcoin’s release schedule, and Qtum’s
performance on patch delay is the second best, while the
remaining projects could release only less than 20% of the
patches within 200 days. Dash is particularly slow, with its
80% patches released after 800 days. In some extreme cases,
the release delay could even exceed 1,000 days, e.g., in Bitcoin
Cash and Dash.

The result for Ethereum and its forked projects is much
more acceptable than Bitcoin’s forked projects. Note that we
exclude Avalanche for the patch delay analysis because three
of its fixed cases were included when Avalanche was first
initialized. As shown in Fig. 6b, for the investigated six CVEs,
Ethereum released all the patches within a short period, at most
22 days to be specific, and four patches were released within
four days. Moreover, Ethereum’s forked projects released all
the investigated patches within 500 days, with more than 80%
released within 200 days and half of the patches released
around 100 days. Polygon is among the best, as it has six fixed
cases whereas all of them were released within 110 days.

VI. DISCUSSION

In this section, we further discuss some insights and
implications about the propagated vulnerabilities in forked
blockchain projects, as well as their defense and detection.

Attacks against the discovered vulnerabilities. Since
the cloned vulnerability typically has a similar code context
with the original vulnerability, the vulnerability behavior
is also likely to be identical. As a result, an adversary
can launch the same attack against the forked project
that contains the cloned vulnerability, with only minor
alterations. For instance, in the case of CVE-2021-3401
identified in the five forked projects of Bitcoin, we followed
a write-up [32] that presented the details of vulnerability
behavior and its complete exploitation and successfully
exploited the discovered cloned vulnerability in all five
projects. Specifically, the root cause of CVE-2021-3401 is
that the GUI program of Bitcoin (and its five forked projects)
misuses Qt-framework’s built-in arguments. For example, by
appending the argument -reverse to Dogecoin’s invoking
command with any wallet address, i.e., dogecoin-qt.exe
dogecoin:3E8ociqZa9mZUSwGdSmAEMAoAxBK3FNDcd
-reverse, we demonstrate that adversaries could change
the program behavior by showing a reversed GUI in Fig. 7.
It is worth noting that real adversaries can use other more
dangerous arguments, such as -platformpluginpath
mentioned in Sec. V-A. Here we use -reverse for easier
demonstration.

Another similar case is CVE-2019-15947, which introduces
the wallet information leakage problem. Since the earlier ver-
sion of Bitcoin stores wallet.dat unencrypted in memory,
upon a crash, it may dump a core file that could be used

Fig. 7: A demo of exploiting CVE-2021-3401 in Dogecoin.

to reconstruct users’ wallet.dat, including private keys.
The original Bitcoin PR#16824 [7] not only reported this
vulnerability but also provided a shell script to exploit it. We
leveraged this script with only minor alterations to successfully
exploit this vulnerability in six forked projects of Bitcoin.

Defense or best practice for developers. According to our
investigation in Sec. V-A, there are three types of propagated
vulnerabilities from Bitcoin/Ethereum to the forked projects,
i.e., the fork, fetch, and mixed types. To avoid them,
developers may follow the two principles: (i) try to avoid intro-
ducing vulnerable commits to the forked projects; and (ii) if a
vulnerability is already introduced, developers should apply the
patch code as soon as possible. For (i), before fetching commits
from the source project, developers should perform a static
detection of the project (e.g., using our tool) and carefully
review the commit code as well as the commit message. For
(ii), developers should conduct security backports regularly
and actively keep up with the source projects’ issues/PRs. For
instance, although CVE-2021-3401 was disclosed in February
2021, the vulnerability was reported in Bitcoin PR#16578 [12]
much earlier on 10 August 2019. This vulnerability would not
have existed for such a long period if developers of the forked
projects had followed Bitcoin’s issue/PR.

Implications on Type-4 clone detection. As Type-4 clones
refer to semantically equivalent but syntactically different
code, understanding code semantics is necessary for such
detection. Specifically, there are two possible directions, stat-
ic/dynamic program analysis (e.g., [38], [45], [48], [51]) and
machine learning on code semantics (e.g., [72], [78], [86]). In
particular, [51] and [38] used the representation of isomorphic
program dependence graph (PDG) as semantic clones. Jiang
et al. [45], on the other hand, regarded that given the same
input, if the outputs of two code fragments are the same,
they are equivalent. Therefore, they used random testing on
different code fragments and found the ones with the same
behavior. MeCC [48] proposed a memory-based approach to
detect semantic clones, i.e., comparing the abstract memory
states of two programs. Sheneamer et al. [72], CDPU [78],
and PACE [86] applied machine learning to detect semantic
clones. Specifically, Sheneamer et al. [72] applied classification
algorithms on the extracted features of abstract syntax trees
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(AST) and PDG. CDPU [78] proposed a positive-unlabeled
learning model and adversarial training to improve detection
performance, while PACE [86] presented an another deep
learning approach by applying token-enhanced AST convo-
lution.

VII. RELATED WORK

In this section, we review the related work on blockchain
vulnerability detection and clone-based vulnerability detection.

Blockchain vulnerability detection. Existing blockchain
vulnerability detection mainly focused on the security of
smart contracts. For instance, Oyente [58], Securify [77],
ZEUS [46], ETHBMC [36], eThor [69], SmarTest [73], and
SAILFISH [28] leveraged static analysis techniques, e.g.,
symbolic execution, to detect vulnerable smart contracts. On
the other hand, Sereum [65] aimed to dynamically detect
the reentrancy attacks [17] and protect the deployed smart
contracts. Similarly, TXSPECTOR [87] designed a generic
and flexible framework for identifying attacking transactions in
Ethereum [80], and SODA [30] is another generic framework
for attack detection. Lastly, Perez et al. [63] studied the
possibility of exploiting the discovered smart contract vulnera-
bilities. Besides the research about smart contract vulnerability
detection, DEFIER [75] automatically investigated the attack
incidents of DApps (decentralized apps), which are built on the
top of smart contracts. Additionally, EVMPatch [66] proposed
a framework for instantly and automatically patching faulty
smart contracts. SolType [76] designed a refinement type
system for Solidity to prevent arithmetic over- and under-flows.

However, only a few studies focused on the vulnerabilities
at the system level. Notably, Kwon et al. [52], Zhang et
al. [88], and Yang et al. [84] investigated the consensus
reward flaws and the consensus system bugs in the Bitcoin
network and Ethereum clients, respectively. Yi et al. [85]
systematically mined the existing vulnerabilities from four
representative blockchains, Bitcoin, Ethereum, Monero, and
Stellar, for security insights. Besides these works, three recent
studies focused on the Bitcoin patch delay analysis that is most
related to BlockScope’s Calculator component. Specifi-
cally, CoinWatch [42] used four CVEs of Bitcoin to test and
analyze the delay of many old Bitcoin’s forked projects that
are no longer maintained. It used the Simian the clone detec-
tor [1], i.e., simple string match, to detect only Type-1 clones.
Similarly, Choi et al. [31] conducted a large-scale empirical
analysis on the code maintenance activities of Bitcoin forks,
with only limited information about security vulnerabilities.
Another technical report, GitWatch [27], tried to accurately
determine the patch commit delay from Bitcoin to its forked
projects. Since git lacks reliable commit timestamps due to
the rebase operation, it leveraged GitHub’s event API and
GitHub Archive to solve this problem. In contrast, BlockScope
focused on the patch release delay that does not require the
git commit timestamp, as explained in Sec. III-F.

Code clone-based vulnerability detection. Code clone
detection is an attractive research area of computer security, as
it has been shown that many bugs and vulnerabilities could be
cloned from one software to another [49]. Unlike the traditional
clone detection tools, such as CCFinder [47], CPMiner [57],
DECKARD [44], and SourcererCC [68], security-oriented

clone detection tools like ReDeBug [43], VUDDY [50],
MVP [82], and VGraph [29] considered both vulnerable and
patched code inputs. Specifically, ReDeBug [43] was among
the most representative works in this direction, and it has
been widely used because of its generality and public code.
Following ReDeBug, VUDDY [50] added variable/parame-
ter/type/function abstraction as a preprocessing and used the
generated fingerprints for more scalable code clone detection.
Similarly, MVP [82] and VGraph [29] conducted more “pro-
gram analysis” in the form of program slicing [81] and code
property graph [83] before similarity measurement to improve
the detection accuracy. Compared with these three works,
BlockScope took a completely different path by proposing
more suitable candidate code search for our problem (as in
Sec. III-C) and improving the core technique on how to better
measure code similarity itself (as in Sec. III-E).

Recently, AI techniques have also been applied in clone-
related vulnerability detection. Specifically, CLCDSA [60]
utilized deep neural networks to detect cross-language code
clones. Gao et al. [39] detected code clones in smart con-
tracts by word embeddings. Ahmadiet et al. [26] leveraged
machine learning-based methods to detect functionally-similar
inconsistent code. DeepBugs [64], VulDeePecker [56], Devign
[90], SySeVR [55], and VulDeeLocator [54] utilized various
kinds of code features of known vulnerabilities to train deep
learning models to identify new vulnerabilities with similar
code features. Additionally, Serrano et al. [70] showed that
similar yet different patches could share the same semantic
and change patterns, while Zhang et al. [89] investigated the
patch delays from Android AOSP to the OEM systems.

VIII. CONCLUSION

In this paper, we detected and investigated the vulnerabil-
ities propagated from Bitcoin and Ethereum to their forked
projects. To this end, we proposed BlockScope that lever-
aged novel context-based candidate search and a new way
of calculating code similarity to efficiently and effectively
identify Type-1/2/3 clones. BlockScope allowed us to discover
101 previously unknown vulnerabilities in 13 out of the 16
popular forked projects of Bitcoin and Ethereum, including 16
from Dogecoin, 6 from Litecoin, 1 from Binance, and 4 from
Optimism. Moreover, the evaluation showed that BlockScope
achieved good precision and high recall both at 91.8% (1.8
times higher recall than that in the state-of-the-art ReDeBug).
We further investigated the propagation and patching processes
of discovered vulnerabilities, and revealed three types of vul-
nerability propagation from Bitcoin/Ethereum to their forked
projects, as well as the long delay (mostly over 200 days) for
releasing patches in Bitcoin’s forked projects (vs. ∼100 days
for Ethereum forks). In the future, we will continue to improve
BlockScope and expand its scope to none-blockchain domains,
e.g., different Linux distributions.
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APPENDIX

A. r’s Impact on Similarity Measurement

As illustrated in Sec. III-E, we introduced the reward
factor r to adjust the ordering issue’s influence on code
similarity. By calculating all the patch and candidate code’s
similarities with different r, we can evaluate the impact of r
on the similarity measurement. In Fig. 8, we plot the CDF of
similarity with r from 0.15 to 0.95. As we can see, r has a
more significant influence on the similarity when the similarity
is low. Moreover, since we try to minimize false negatives, we
need to include more candidate code in the analysis. As such,
we should exclude fewer candidate code that has similarity
below the threshold. According to Fig. 8, when r = 0.95, it has
the least candidate code with similarity below 0.4. Therefore,
we set 0.95 as the default value of r.
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Fig. 8: The CDF plot of similarity with different r.
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